emou.ru

Соединение веществ в химии. Защита окружающей среды от загрязнений. Влияние катализаторов и ингибиторов

ХИМИЯ ОРГАНИЧЕСКАЯ. КЛАССЫ СОЕДИНЕНИЙ
Органические соединения (углеводороды и их производные) можно разделить на два типа: ациклические (или алифатические, т.е. с открытой углеродной цепью) и циклические; последние в свою очередь подразделяются на алициклические, в молекулах которых содержатся углеродные кольца неароматического характера; ароматические, проявляющие свойства, характерные для бензола; гетероциклические, в которых один или несколько атомов в кольце представляют собой атомы неметаллов, отличные от углерода. Внутри каждого из этих типов возможна дальнейшая дифференциация на классы по присутствующим в них реакционным центрам - функциональным группам. Например, органические соединения, имеющие карбоксильную группу -СООН, являются кислотами и вступают в реакции, характерные для кислот (нейтрализация оснований, образование эфиров со спиртами и т.д.). Реакции таких групп несколько изменяются при изменении структуры молекулы, в которой они находятся; на них могут влиять и другие группы в молекуле, хотя это влияние обычно мало. Ниже перечислены типичные функциональные группы с примерами наиболее значимых и интересных представителей каждого класса, затем рассматриваются реакции функциональных групп (разд. IV. "Реакции органических соединений").
А. УГЛЕВОДОРОДЫ
Углеводороды являются соединениями углерода и водорода. (Простейший углеводород - метан СН4.) Алифатические и алициклические углеводороды могут содержать прямые (неразветвленные), разветвленные или замкнутые в кольца цепи углеродных атомов. Если четыре углеродных атома соединены один с другим только простыми (одинарными) связями, образуется углеводород бутан C4H10 с открытой (неразветвленной) цепью:

Здесь черточки изображают ковалентные связи между углеродными атомами в плоскости страницы, пунктирные линии - связи с атомами водорода ниже, а жирные клинообразные линии - с атомами водорода выше этой плоскости. Углы между углерод-углеродными связями 109°. Эта молекула может свободно вращаться вокруг простых связей (что вообще справедливо для простых связей). Структурную формулу бутана можно написать как


либо проще, CH3-CH2-CH2-CH3 или CH3CH2CH2CH3. Для четырех углеродных атомов, связанных простыми связями, возможна также структура с разветвленной цепью:


Эта формула изображает другое соединение - изобутан, у которого иные свойства, чем у бутана (например, более низкие температуры кипения и замерзания). Заметим, что и бутан, и изобутан имеют один и тот же состав: C4H10. Такие соединения, с одинаковыми брутто-формулами, называются "изомерами". Изомерия - обычное явление в органической химии, для сложных формул возможны миллиарды изомеров. Существуют два циклических четырехуглеродных (C4) углеводорода, содержащих только простые связи: циклобутан и метилциклопропан, оба имеют брутто-формулу C4H8:



Насыщенные и ненасыщенные углеводороды. Насыщенные (предельные) углеводороды - алканы (парафины) - содержат только простые (одинарные) связи между атомами углерода (например, метан, бутан, изобутан и циклобутан). Если в молекуле присутствует кратная (двойная, тройная) связь, соединение называют ненасыщенным (или непредельным) - это алкены (олефины) и алкины (ацетилены). Алканы обычно химически инертны, поскольку все валентные электроны углерода и водорода прочно связаны в сильных ковалентных связях. Метан, бутан и изобутан представляют собой алканы. Циклоалканы, представителями которых являются циклобутан и метилциклопропан, - алканы, содержащие кольцо из углеродных атомов. У ненасыщенных углеводородов реакционный центр находится по месту кратной связи. Они вступают в разнообразные химические реакции гораздо легче, чем насыщенные углеводороды. Простейший из алкенов - этилен:


Все атомы этой молекулы лежат в одной плоскости. Вращение вокруг двойных связей невозможно, поэтому если два олефина одинакового состава различаются расположением групп относительно двойной связи, то они не идентичны и называются цис-транс-изомерами. У цис-изомеров одинаковые группы, соседние с двойной связью, расположены по одну сторону двойной связи, тогда как в транс-изомерах - по разные стороны.


Ацетилен H-CєC-H является простейшим алкином. Все его атомы лежат на прямой линии, поэтому цис-транс-изомерия невозможна, хотя атомы, связанные тройной связью, не могут вращаться друг относительно друга. Молекула бутина-2 H3C-CєC-CH3 также линейна. Ароматические углеводороды содержат шестичленные кольца условно с тремя двойными связями, чередующимися с тремя простыми. Простейшим соединением этого типа является бензол, имеющий структуру


Свойства. Углеводороды представляют собой наименее полярные из органических молекул, поскольку связи C-H почти полностью ковалентны. В результате они имеют относительно низкие температуры кипения (т. кип.) и плавления (т. пл.) по сравнению с другими органическими соединениями. Углеводороды, содержащие в цепи до четырех атомов углерода включительно, при атмосферном давлении и комнатной температуре газообразны; к ним относятся топливные газы метан CH4, этан C2H6, пропан C3H8 и бутан C4H10 (последние два обычно продают в баллонах под давлением). Насыщенные неразветвленные углеводороды становятся твердыми при комнатной температуре, начиная с углеводорода C16. Разветвленные и ненасыщенные углеводороды являются более низкоплавкими соединениями; например, углеводород с прямой цепью гексадекан CH3(CH2)14CH3, или C16H34, плавится при 20° С, а разветвленный углеводород тетрамер 2-метилпропена (C4H8)4, или C16H32, затвердевает при -139° С, тогда как ненасыщенный углеводород гексадецин-2 CH3(CH2)12CєCCH3, или C16H30, имеет т. пл. -25° С. Циклическим соединениям свойственны более высокие температуры плавления, чем алифатическим (с открытой углеродной цепью) соединениям той же молекулярной массы; например, у 1,3-диметилциклогексана C6H10(CH3)2 т. пл. -85° С, т.е. на 19° С выше, чем у неразветвленного углеводорода октена C8H16, который имеет ту же брутто-формулу (и поэтому ту же молекулярную массу), но плавится при -104° С. Все углеводороды горят, образуя углекислый газ и воду. Химические реакции насыщенных, ненасыщенных и ароматических соединений совершенно отличны друг от друга.
Практически важные углеводороды. Ниже перечислены некоторые имеющие большое практическое значение углеводороды, их свойства и применения. Метан CH4 - бесцветный, не имеющий запаха газ с т. кип. -162° С. Он является главным компонентом природного газа, широко используемого как топливо. Сырая нефть - сложная смесь углеводородов (и некоторых следовых соединений) вплоть до С40. Перегонка и химическая переработка нефти дают множество промышленных углеводородов и очищенных смесей углеводородов. К продуктам, получаемым перегонкой нефти, относятся (в порядке повышения т. кип.) разбавители для красок, бензин, керосин, минеральные масла, смазочные масла и асфальт
(см. НЕФТЕХИМИЧЕСКИЕ ПРОДУКТЫ ;
ХИМИЯ И МЕТОДЫ ПЕРЕРАБОТКИ НЕФТИ). Циклопропан - бесцветный горючий газ с т. кип. -33° С. Его используют в органическом синтезе и медицине (как анестетик). Этилен H2C=CH2, бесцветный газ с т. кип. -102° С. Исходный материал для синтеза ряда химических продуктов, в том числе этилового спирта и полиэтилена (см. ПЛАСТМАССЫ). Пропилен H3C-CH=CH2, бесцветный газ с т. кип. -48° С. Мономер полипропилена.
Бутадиен и стирол. Бутадиен H2C=CH-CH=CH2, бесцветный горючий газ без запаха с т. кип. -4,5° С. Стирол C6H5CH=CH2, бесцветная жидкость со специфическим запахом ароматических соединений, т. кип. 146° С. Эти углеводороды служат исходными мономерами для получения ряда пластмасс и каучуков. Бензол C6H6, прозрачная, бесцветная, горючая жидкость с характерным запахом, т. кип. 80° С. Бензол широко используется как растворитель и исходный материал для синтеза многих органических соединений, включая взрывчатые вещества, красители и медицинские препараты. Нафталин C10H8 с молекулярной структурой в виде двух конденсированных колец (см. табл. 4). Это белые кристаллические пластинки с т. пл. 80° С, вещество летуче. Общеизвестно его применение в виде шариков для отпугивания моли; сырье в производстве красителей. Ацетилен HCєCH, бесцветный газ с т. кип. -83° С. Его применяют как горючее в ацетиленовых горелках для резки и сварки металлов, а также для синтеза многих других органических соединений.
Б. ОРГАНИЧЕСКИЕ ГАЛОГЕНИДЫ
Органические галогениды имеют общую формулу R-X, где R - стандартное обозначение для углеводородных групп, а X - атом галогена (фтора, хлора, брома или иода). Органические галогениды очень важны как исходные реагенты органического синтеза и растворители. Так же, как и углеводороды, они не очень полярны, и многие из них являются жидкостями. Некоторые из них ядовиты (например, тетрахлорид углерода), другие совершенно нетоксичны (например, фреоны, используемые в холодильниках для хранения пищевых продуктов). Хлориды гораздо дешевле бромидов и иодидов и потому находят более широкое применение в качестве растворителей. Практически важные органические галогениды. Тетрахлорид углерода CCl4, бесцветная негорючая жидкость, т. кип. 77° С. Его широко используют в качестве растворителя жиров и для выведения пятен, но он довольно ядовит и вдыхание заметных количеств его паров вызывает серьезное повреждение печени. Раньше его применяли для пожаротушения, но от этого пришлось отказаться, так как при высоких температурах из него может образоваться смертельно опасный газ фосген COCl2. Хлороформ (трихлорметан) CHCl3, жидкость со сладковатым запахом, т. кип. 61° С. Его широко применяли как анестетик, но поскольку он ядовит, были разработаны заменяющие его анестезирующие средства. Однако его еще используют для гуманного умерщвления животных. Как и тетрахлорид углерода, хлороформ является прекрасным растворителем. Трихлорэтилен ClCH=CCl2, стабильная, тяжелая, ядовитая жидкость, т. кип. 87° С. Широко применяется как растворитель для химической чистки наряду с другими сходными хлорсодержащими растворителями; все они дешевы, не слишком летучи и менее токсичны, чем тетрахлорид углерода. Дихлордифторметан CCl2F2, бесцветный инертный газ без запаха, т. кип. -30° С. Один из низкомолекулярных хлорфторуглеводородов, называемых фреонами или хладонами, которые использовались как хладагенты и пропелленты в аэрозолях для распыления красок, инсектицидов и т.д. К фреонам относятся также хлордифторметан и хлортрифторметан. Все фреоны нетоксичны и не вызывают коррозии, но в настоящее время международные экологические соглашения предусматривают постепенную замену их другими соединениями с аналогичными физическими свойствами, поскольку фреоны, попадая в стратосферу, способствуют разрушению защитного озонового слоя Земли. См. также ХОЛОДИЛЬНАЯ ТЕХНИКА . Тетрафторэтилен F2C=CF2, бесцветный газ с т. кип. -78,4° С, который полимеризуется, образуя тефлон, химически инертный полимер со структурой F(CF2)nF. Хлоропрен H2C=CCl-CH=CH2, бесцветная жидкость, т. кип. 59,4° С. Его используют преимущественно для производства хлоропренового (неопренового) каучука.
См. также КАУЧУК И РЕЗИНА . Винилхлорид H2C=CHCl, легко ожижаемый газ, т. кип. -13,9° С. Его применяют как хладагент и в производстве пластмасс. Метилбромид (бромметан) CH3Br, ядовитый газ, т. кип. 5° С. Используется для стерилизации почвы, так как в высоких концентрациях убивает все живые организмы; он безвреден для человека в низких концентрациях при кратковременном контакте.
В. СПИРТЫ
Спирты имеют общую структурную формулу ROH. Группа -OH высокополярна, и поэтому спирты гораздо более растворимы в воде и других полярных растворителях, чем углеводороды, галогениды или простые эфиры. Простые спирты, содержащие менее четырех атомов углерода, смешиваются с водой во всех соотношениях. Благодаря полярному характеру спиртов, их точки кипения также относительно высоки. Так, пропан C3H8, метилхлорид CH3Cl и этиловый спирт C2H5OH имеют приблизительно одинаковые молекулярные массы, но их т. кип. лежат соответственно при -24° С, -42° С и +78° С. Первые два соединения почти полностью нерастворимы в воде, тогда как этиловый спирт смешивается с ней в любых пропорциях. Спирты вступают в многочисленные и разнообразные реакции и поэтому имеют большое значение в качестве промежуточных соединений в синтезах. Они также являются важными промышленными растворителями.
Практически важные спирты. Метиловый спирт (метанол) CH3OH, бесцветная растворимая в воде жидкость, т. кип. 65° С. Когда-то его получали сухой перегонкой дерева и потому его иногда называют "древесный спирт". Теперь его производят в наибольших количествах из нефти. Метиловый спирт - это смертельный яд, и его потребление внутрь может привести к слепоте или смерти. Он представляет собой важный растворитель для полярных соединений и используется в больших количествах как антифриз. Для последней цели его летучесть является серьезным недостатком, так как требует долива по мере испарения. Этиловый спирт (этанол) C2H5OH, бесцветная жидкость, т. кип. 78° С, полностью растворима в воде. Именно этиловый спирт содержится в спиртных напитках и приготавливается для этой цели сбраживанием крахмала, сахара или зерна. Он также находит широкое применение как промышленный растворитель и для приготовления настоек, которые являются просто растворами в спирте. Большие количества этилового спирта получают из этилена (продукта нефтяной промышленности). Этиловый спирт служит исходным материалом для приготовления длинного списка продуктов химической промышленности: уксусной кислоты, сложных эфиров и многих других низкомолекулярных соединений. Пищевой спирт идет на изготовление алкогольных напитков, но технический этиловый спирт выпускается также в виде т.н. денатурата, непригодного для питья, но подходящего для многих других целей. Денатурирование достигается прибавлением нескольких процентов постороннего трудно удаляемого вещества. Поступающий в продажу этиловый спирт содержит около пяти процентов воды, которую нельзя удалить простой перегонкой водно-спиртовой смеси. От последних следов воды можно избавиться перегонкой с небольшим количеством бензола или другими способами, дающими безводный "абсолютный" спирт. Изопропиловый спирт (изопропанол) (CH3)2CH-OH, бесцветная жидкость, т. кип. 82° С. Изопропиловый спирт используется как растворитель и как промежуточное вещество для получения сложных эфиров и других продуктов химической промышленности. Бутиловый спирт (бутанол) CH3CH2CH2CH2OH, бесцветная, частично растворимая в воде жидкость, т. кип. 118° С. В промышленности его получают сбраживанием крахмала (зерна) или сахаров при помощи особого штамма микроорганизмов, которые продуцируют бутиловый спирт и ацетон, а не этиловый спирт. н-Бутанол (нормальный бутиловый спирт, т.е. с неразветвленной углеродной цепью) находит широкое применение в производстве растворителей для лаков. Сивушное масло является смесью C5-спиртов, образующихся в качестве побочного продукта при получении других спиртов посредством брожения. Более обычный способ получения C5-спиртов, используемых в качестве растворителей и для приготовления эфиров, состоит в гидролизе C5-хлоридов, продуктов хлорирования соответствующей нефтяной фракции. Этиленгликоль HOCH2CH2OH, прозрачная, бесцветная, сиропообразная жидкость, т. кип. 198° С. Этиленгликоль находит широкое применение как антифриз, поскольку он полностью растворим в воде, дешев, нелетуч и сильно снижает точку замерзания водных растворов (60%-ный раствор этиленгликоля в воде замерзает при -40° С). Этиленгликоль умеренно ядовит. Глицерин HOCH2CH(OH)CH2OH, прозрачная, сладкая на вкус, бесцветная или желтоватая сиропообразная жидкость, полностью растворимая в воде, т. кип. 290° С. Легко перевариваемый и нетоксичный, глицерин находит применение как увлажняющий и текстурирующий агент в пищевых продуктах, в косметике (кремы для рук) и некоторых медицинских препаратах. В связанном виде глицерин присутствует во всех жирах и получается в больших количествах как побочный продукт при производстве мыла. Однако этого источника недостаточно для полного удовлетворения спроса на глицерин, и потому его синтезируют из продуктов переработки нефти. Одно из его главных промышленных применений - получение взрывчатого вещества нитроглицерина O2NOCH2CH(ONO2)CH2ONO2 при обработке азотной кислотой. Динамит является смесью нитроглицерина с наполнителем (см. также ГЛИЦЕРИН). Ментол, относительно летучее твердое вещество, т. пл. 43° С, является главным компонентом масла перечной мяты. Он обладает приятным запахом, и в малых количествах, будучи примешан к сигаретному дыму, каплям от кашля, жевательной резинке и другим продуктам, вызывает ощущение "холода" во рту. Его структурная формула


Гераниол C10H17OH и цитронеллол C10H19OH являются главными компонентами розового масла, которому они придают приятный запах. Они используются для приготовления духов. Существуют два изомера гераниола, отличающихся только положением наиболее удаленной от ОН-группы двойной связи. Один из этих изомеров изображается формулой


Цитронеллол отличается только отсутствием ближайшей к ОН двойной связи. Стерины (стеролы) - общее название твердых кристаллических спиртов стероидного ряда (см. также СТЕРОИДЫ), которые содержат ОН-группу при С-3 и алифатическую боковую цепь при С-17 в пергидроциклопентанофенантреновом скелете. Примерами стеринов являются холестерин, ситостерин и эргостерин. Стерины найдены как в растительных, так и животных тканях, где входят в состав клеточных липидных мембран. У животных холестерин служит исходным веществом для биосинтеза стероидных гормонов.


Г. ФЕНОЛЫ
Фенолы - это ароматические спирты общей формулы R-OH, где группа R является остатком ароматического углеводорода (т.е. бензола, нафталина или родственного им циклического соединения). Фенолы - слабые кислоты. Практически важные фенолы. Фенол (карбоновая кислота), кристаллическое вещество, т. пл. 42° С. Обычно фенол используют в водном растворе, причем небольшое количество воды служит для "разжижения" большого количества фенола. Он имеет сильный характерный запах и представляет собой эффективный антисептик. Во время Первой мировой войны фенол широко использовался в виде разбавленного раствора для обеззараживания ран, но в современной практике его вытеснили более действенные и менее едкие дезинфицирующие средства.


Среди промышленных продуктов, производимых из фенола, заслуживает упоминания пикриновая кислота - желтое красящее и взрывчатое вещество, применявшееся в больших количествах в Первой мировой войне, и различные другие красители. Креозот, используемый для предохранения и защиты древесины, содержит фенол и другие соединения, которые задерживают рост бактерий и отпугивают насекомых. Метилфенолы (крезолы) являются наиболее значимыми среди других фенольных соединений; их применяют в производстве феноло-формальдегидных смол, дезинфицирующих средств, фунгицидов, гербицидов, азокрасителей и т.д.
Нафтолы. a-Нафтол, бесцветное или желтоватое твердое вещество с неприятным запахом, применяется в производстве красителей и синтетических душистых соединений, т. кип. 278° С. b-Нафтол, имеющий ту же брутто-формулу C10H7OH, белое блестящее твердое вещество, т. кип. 285° С; его используют как дезинфектант и в производстве красителей, медикаментов и синтетических душистых соединений.


Гидрохинон (1,4-дигидроксибензол) C6H4(OH)2, водорастворимое твердое вещество, т. кип. 285° С. Его применяют как фотографический проявитель для восстановления активированных солей серебра в черное мелкодисперсное металлическое серебро.
Эвгенол и тимол. Эвгенол, бесцветная или желтоватая маслянистая жидкость, т. кип. 254° С; тимол, белое кристаллическое вещество с "ароматическим" запахом, т. кип. 233° С, и некоторые другие родственные фенолы широко распространены в эфирных маслах, например, масле гвоздики (эвгенол) и тимьяна.



Ванилин, белое кристаллическое вещество, т. кип. 285° С; слегка растворим в воде. Он является основным душистым компонентом ванили. По этой причине его широко применяют в искусственных отдушках, причем лишь небольшой концентрации достаточно, чтобы обеспечить сильный ванильный запах. Для его синтеза имеется несколько путей.


Заметим, что ванилин содержит наравне с фенольной простую эфирную и альдегидную группы.
Д. КАРБОНОВЫЕ КИСЛОТЫ
Карбоновые кислоты имеют общую формулу R-COOH. Они являются кислотами средней силы, будучи сильнее, чем фенолы, но слабее, чем такие минеральные кислоты, как соляная, азотная или серная; как все кислоты, они имеют характерный кислый вкус. Поскольку эти кислоты высокополярны, они кипят при температурах даже более высоких, чем спирты, а простейшие кислоты (содержащие до пяти атомов углерода в цепи) растворимы в воде. Низшие кислоты - жидкие вещества, но с увеличением длины углеродной цепи повышаются и температуры плавления. Карбоновые кислоты вступают во многие важные химические реакции, а получаемые из них разнообразные продукты находят широкое применение. Многие кислоты, содержащие С=О, -OH или несколько групп -COOH, играют существенную роль в биологическом обмене веществ (см. БИОХИМИЯ). Когда кислоты реагируют с основаниями, образуются ионные соли общей формулы RCOOM, где M - ион металла. Соли жирных кислот (алифатических карбоновых кислот с длинной цепью) называются мылами. Практически важные карбоновые кислоты. Муравьиная кислота HCOOH, простейшая из карбоновых кислот. Это водорастворимая жидкость, т. кип. 100,8° С. У многих жалящих насекомых муравьиная кислота служит раздражающим компонентом яда. Уксусная кислота CH3COOH, бесцветная прозрачная жидкость, т. кип. 118° С, важный промышленный продукт, получаемый путем сбраживания сахаров (или этилового спирта) или синтетически из нефтепродуктов либо ацетилена. Уксус представляет собой разбавленный раствор уксусной кислоты, получаемой брожением, причем его кислый вкус - это вкус уксусной кислоты. Она используется в производстве ряда пластмасс, волокон, синтетических покрытий и является хорошим растворителем. Масляная кислота CH3CH2CH2COOH, т. кип. 163° С, жидкость с отвратительным запахом, обусловливающая в значительной степени неприятный запах прогорклого масла. Она находит некоторое промышленное применение как растворитель и при приготовлении бутиратов. Стеариновая кислота CH3(CH2)16COOH, воскообразное вещество, т. пл. 70° С. Она широко распространена в связанной форме как компонент жиров и используется вместе с парафином в производстве свечей для улучшения их горючих свойств, в приготовлении натриевой соли для производства мыла и кальциевой соли для детских присыпок, в производстве резины, смазок и для многих других целей. Жирные кислоты - карбоновые кислоты алифатического ряда. Алифатические кислоты с числом углеродных атомов в молекуле больше 6 называют высшими жирными кислотами (ВЖК). ВЖК могут быть природными и синтетическими. Природные ВЖК - обычные одноосновные (содержат одну карбоксильную группу в молекуле), нормального строения (неразветвленные), могут быть насыщенными или ненасыщенными. Жирные кислоты с четным числом углеродных атомов, содержащие от двух до двадцати четырех атомов углерода, можно получить из природных жиров. Компонентами этих жиров являются многочисленные ненасыщенные кислоты, наиболее обычной среди которых является олеиновая CH3-(CH2)7-CH=CH-(CH2)7-COOH, содержащая подобно стеариновой 18 атомов углерода, но имеющая одну цис-углерод-углеродную двойную связь. Как и у других ненасыщенных кислот, ее точка плавления (16° С) значительно ниже, чем у соответствующих насыщенных кислот. Адипиновая кислота HOOC(CH2)4COOH, как все кислоты с двумя и более группами -COOH, представляет собой твердое вещество. Она используется в многотоннажном производстве найлона. Молочная кислота CH3CH(OH)COOH, легко растворимое в воде вещество, плавящееся при комнатной температуре (18° С) и имеющее большое значение в биологических системах. Это она придает кислый вкус прокисшему молоку. Лимонная кислота HOOC-C(OH)(CH2COOH)2, водорастворимое твердое вещество без запаха, содержится в плодах всех цитрусовых. Водный раствор кислоты очень похож по вкусу на сок лимона, и потому лимонная кислота используется в разнообразных напитках из-за ее характерного приятного кислого привкуса. Она играет существенную роль в превращениях сахаров в организме. Винная кислота HOOCCH(OH)CH(OH)COOH, существует в трех стереоизомерных формах, называемых D-, L- и мезо-. Она присутствует в винограде и может осаждаться в виде соли в винных бочках во время брожения. Эта соль, тартрат калия-натрия, обычно известна как винный камень.
Е. АЛЬДЕГИДЫ И КЕТОНЫ
Альдегиды и кетоны имеют общие формулы R-CH=O и R-CO-R соответственно. Карбонильная группа С=О высокореакционноспособна, и поэтому альдегиды и кетоны занимают необычайно важное место в органическом синтезе многочисленных и разнообразных соединений. Некоторые члены этого класса используются в качестве ароматических добавок и душистых веществ и частично обусловливают характерные запахи некоторых растительных экстрактов и эссенций.
Практически важные альдегиды и кетоны. Формальдегид CH2=O, газ, т. кип. -21° С, обычно используется в виде водного раствора под названием "формалин". Газообразный формальдегид полимеризуется в твердый параформ H(OCH2)nOH, из которого регенерируется при нагревании. Как и другие низкомолекулярные альдегиды, формальдегид имеет острый запах. Формалин используют для консервации биологических материалов, а формальдегид применяют в многотоннажных процессах производства синтетических волокон и пластмасс. Ацетон CH3COCH3, т. кип. 56° С, приятно пахнущая жидкость с высокой растворяющей способностью для таких материалов, как нитроцеллюлоза (используемая во взрывчатых веществах и лаках) и пластмассы. Ацетон применяется как растворитель и как разбавитель для лаков. Его также используют в синтезе более сложных органических соединений. Акролеин CH2=CH-CH=O, т. кип. 56° С; его пары обладают раздражающим действием на слизистую. Он образуется при пиролизе ("перегреве") жиров.
Бензохинон. Желтое легко возгоняющееся твердое вещество, бензохинон является простейшим членом класса соединений, известных как "хиноны", которые содержат подобную циклическую систему. Некоторые хиноны представляют собой важные красители, другие являются пигментами растений и насекомых.


Камфора (камфара) представляет собой твердый летучий кетон с характерным приятным запахом. Из камфарного дерева получают L-форму, а D,L-форму производят в промышленных масштабах путем синтеза из других природных продуктов.
Ж. ПРОСТЫЕ ЭФИРЫ
Простые эфиры имеют общую структуру R-O-R", в которой R и R" представляют собой углеводородные группы. Низшие члены ряда являются жидкостями, полярность их молекул низка (как и в случае углеводородов и органических галогенидов).
Практически важные простые эфиры. Диэтиловый эфир C2H5OC2H5, обычно называемый просто "эфир", - прозрачная, бесцветная жидкость с характерным запахом, кипящая при 35° С. Эфир используют как анестетик для наркоза, как растворитель для различных органических веществ и для химической чистки одежды. Этиленоксид, т. кип. 11° С, высокореакционноспособный газ, применяемый в ряде органических синтезов, в том числе при получении этиленгликоля (первичный компонент большинства антифризов) и в производстве важного класса растворителей, известных под общим названием "целлозольвов" (R-O-CH2CH2-OH).
З. СЛОЖНЫЕ ЭФИРЫ
Сложные эфиры R-COOR" рассматриваются как производные карбоновых кислот, поскольку их можно получить отщеплением молекулы воды от кислоты и спирта: R-COOH + R"-OH -> R-COOR" + H2O Летучие эфиры - жидкости с приятным фруктовым ароматом, прекрасные растворители для органических веществ. Некоторые эфиры обусловливают аромат душистых растений.
Практически важные сложные эфиры. Этилацетат CH3COOC2H5, т. кип. 77° С, находит свое главное применение как растворитель. Он образуется в реакции между этиловым спиртом и уксусной кислотой в присутствии катализатора. Амилацетат CH3COOCH2CH2CH2CH2CH3, т. кип. 148° С, иногда называют "банановым маслом" (которое он напоминает по запаху). Он образуется в реакции между амиловым спиртом (часто - сивушным маслом) и уксусной кислотой в присутствии катализатора. Амилацетат широко применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.
Фруктовые эфиры. Характер многих фруктовых запахов, таких, как запахи малины, вишни, винограда и рома, отчасти обусловлен летучими эфирами, например этиловым и изоамиловым эфирами муравьиной, уксусной, масляной и валериановой кислот. Имеющиеся в продаже эссенции, имитирующие эти запахи, содержат подобные эфиры. Винилацетат CH2=CHOOCCH3, образуется при взаимодействии уксусной кислоты с ацетиленом в присутствии катализатора. Это важный мономер для приготовления поливинилацетатных смол, клеев и красок. Среди других сложных эфиров большое практическое значение имеют жиры, которые являются триэфирами глицерина и жирных кислот, а также воски - эфиры высокомолекулярных спиртов и высших жирных кислот.
И. АМИНЫ
Аминами называются производные аммиака NH3, получаемые путем замещения в нем атома H на органическую группу R; в зависимости от числа замещенных атомов водорода они могут быть первичными (RNH2), вторичными (R2NH) и третичными (R3N). (Присоединение четвертой группы R дает ряд ионных солей R4N+X-, напоминающих по структуре соли аммония, которые в противоположность аминам являются нелетучими твердыми веществами без запаха или с очень слабым запахом.) Амины представляют собой самую важную группу органических оснований: они имеют большое биологическое значение и применяются для получения разнообразных производных, включая красители и медицинские препараты.
Практически важные амины. Триметиламин (CH3)3N, подобно другим низкомолекулярным аминам, является газом с аммиачным, или "рыбным" запахом. Он образуется при разложении рыбы. Его получают взаимодействием метилового спирта или диметилового эфира с аммиаком; используют для производства бактерицидов, флотореагентов, кормовых добавок. Анилин C6H5NH2, т. кип. 184° С, бесцветная маслянистая жидкость, которая быстро становится бурой при контакте с воздухом и светом. Является исходным материалом для получения ряда анилиновых красителей, лекарственных средств (сульфамидных препаратов, ацетанилида и др.), взрывчатых веществ, анилино-формальдегидных смол, антиоксидантов, фотоматериалов и т.д. Адреналин, амфетамин (бензедрин) и эфедрин. Адреналин - гормон, выделяемый надпочечниками, который вызывает сужение капиллярных сосудов и тем способствует повышению давления крови. Секреция этого гормона увеличивается в моменты стресса, помогая организму адекватно реагировать на опасность. Амфетамин (бензедрин, синтетический препарат) и эфедрин имеют сходное действие.



Аминокислоты содержат как амино-, так и кислотную карбоксильную группу. Аминокислоты играют большую роль в химии живых систем. Из них особенно важны a-аминокислоты общей структуры R-CH(NH2)-COOH, которые являются строительными блоками белков.
К. ДРУГИЕ ФУНКЦИОНАЛЬНЫЕ ГРУППЫ
Азотсодержащие группы. Кроме аминов, азот содержат различные другие функциональные группы. Амиды имеют общую структуру RC(O)NR"R ", где R" и R " - органическая группа или H; почти все они являются твердыми веществами. Нитросоединения R-NO2 представляют собой важные промежуточные соединения в органическом синтезе и взрывчатые вещества - тринитротолуол, тринитрофенол (пикриновая кислота), нитроглицерин. В нитрилах азот связан с углеродом тройной связью R-CєN; азосоединения содержат группу -N=N-, которая придает окраску многим синтетическим красителям.
Соединения серы. Наиболее важными типами сернистых соединений являются меркаптаны (тиолы) R-SH и сульфокислоты R-SO3H, представляющие собой сильные кислоты. Низшие меркаптаны - газы или жидкости с неприятным запахом. Метилмеркаптан CH3SH - газ, используемый для придания легко распознаваемого неприятного запаха топливному газу, который сам по себе почти лишен запаха, с целью обнаружения утечек газа. Бутилмеркаптан CH3CH2CH2CH2SH - жидкость, обнаруженная в пахучих железах скунса. Соли сульфокислот с длинной углеводородной цепью используют как моющие средства; сульфаниламидные лекарственные препараты и сахарин - также производные сульфокислот.


Другая классификация. Чтобы подчеркнуть общий источник, функции или сложные структурные особенности, органические соединения часто классифицируют по другим признакам, чем их функциональные группы.
См. также

Естественные и научные основы строительства

Современное строительство использует великое множество самых разнообразных строительных материалов, из которых при помощи определенных строительных технологий и строится здание или сооружение.

Так же как и в остальных отраслях жизнедеятельности человека, в строительстве основой являются физические, химические и электрические законы природы.

Поэтому при возведении здания учитываются самые разнообразные химические и физические процессы, которые проистекают в материалах при строительстве, сразу же после него или в процессе эксплуатации здания. Строительный проект будущего здания или сооружения должен быть ориентирован, в том числе и на использование материалов, наиболее подходящих для данного климата, для данной местности, а также максимально ориентированного на экологическую чистоту и безопасность.

Обеспечить это сочетание качества строительства и высокого уровня безопасности и долговечности можно, только принимая во внимание основные химически свойства различных строительных материалов, что невозможно сделать без хорошего знания этих предметов.

Химические основы строительства

Химические процессы играют важную роль в современном строительстве. Это состав, приготовление, а также преобразования веществ и происходящие при этом процессы.

Каждое тело, будь оно твердым, жидким или даже газообразным, занимает определенное пространство и вытесняет из него другие вещества. Каждое тело состоит из вещества, материи. В свою очередь вещество, занимая определенное пространство, также является телом. Свойства тел включают в себя форму агрегатного состояния, объем и энергетическое состояние.

Свойства веществ включают в себя способность реакции с другими веществами, запах, вкус, устойчивость к коррозии, устойчивость к теплу и холоду. Строительная химия занимается составом и химическими свойствами веществ, а также изменениями этих свойств при химических процессах.

Химические и физические процессы в строительстве

Химический процесс подразумевает соединение нескольких веществ с целью получения нового вещества, по своим химическим свойствам отличного из химических свойств каждого отдельного исходного компонента, который входит в состав. Таким образом, при помощи химических процессов возникает новое вещество, обладающее заданными свойствами.

При физических процессах новых веществ не образуется, но изменяется одно из физических свойств вещества – агрегатное состояние, положение или размер. Как правило, при физическом изменении вещества его химический состав остается без изменений.

Виды материалов

По своему составу вещества делятся на несколько видов. Это основные вещества, смеси, химические соединения и элементы.

Смеси состоят из совокупности различных веществ и отдельных материалов. Также смеси позволяют при помощи физико-механической технологии разложить себя на отдельные вещества. Физико-механические методы разделения смесей – это дистилляция, выпаривание, фильтрование и отстаиваниеХимические соединения состоят как минимум из двух разных основных веществ или химических элементов. Химическое соединение не может быть разложено на составляющие вещества при помощи физико-механических процессов, как, например, смеси. Такое разложение возможно только лишь при помощи химических процессов.

Химические элементы – это основные вещества, которые не могут быть разложены на составляющие в принципе, ни при помощи физико-механических методов, ни посредством химической реакции.

Химические элементы

В природе существует 92 химических элемента. Из этих элементов в различных пропорциях и состоят все вещества на нашей планете. Семнадцать элементов из них получены искусственным путем, то есть не встречаются в природе в чистом виде. Природные элементы состоят из 66 металлов, 16 неметаллов и 6 полуметаллов. Металлы имеют выраженный металлический блеск, хорошо проводят электрический ток и тепло. Неметаллы, среди которых преобладают газообразные и летучие элементы, преимущественно не проводят электрический ток, то есть являются диэлектриками.

Также неметаллы, как правило, плохо проводят тепло. Полуметаллы могут обладать как металлическими, так и не металлическими свойствами. Яркий пример таких элементов – это селен и кремний. Элементы обозначают, помимо их названий на разных языках, Буквенными сокращениями от названия элемента на греческом или латинском языках.

Чаще всего для

определения удельной массы, плотности и других свойств вещества пользуются периодической таблицей элементов, где химические элементы размещены в порядке возрастания физических и химических свойств и разделяются на группы и подгруппы. Химические элементы состоят из атомов. Определенные атомы определенных элементов имеют сходное или идентичное строение.

Атомы

Атом, как известно из школьного курса химии, является наименьшей частицей вещества. Увидеть атом невооруженным глазом невозможно, да и для оптического созерцания атомов понадобится довольно мощный микроскоп. Поэтому вид, структуру атомов и происходящие с ними процессы чаще всего представляют при помощи моделей. Разработал модели атомов датский химик и естествоиспытатель Нильс Бор (1885-1962). Согласно общепринятой модели, атом состоит из оболочки и атомного ядра и имеет круглую форму. Диаметр атомной оболочки составляет 0,0000001 мм. Диаметр атомного ядра – 0,000000001 мм.

Атомное ядро, как следует из его названия, расположено в центре атома. Масса атомного ядра составляет практически всю массу атома. Состав атомного ядра – так называемые нуклоны, или кирпичики атомного ядра. Нуклоны в свободном виде не встречаются в природе и существуют только в составе атома. Нуклоны не однородны, а подразделяются между собой на протоны, положительно заряженные частицы, и нейтроны, которые остаются нейтральными.

Ядро атома может состоять из нескольких протонов и нескольких нейтронов. Именно количество и соотношение протонов и электронов определяют физические и химические качества элемента, состоящего из данных атомов.

Некоторые же физические законы неизменны во всех ядрах атомов. Так, массовое число или число нуклонов равняется массовому числу суммы нейтронов и протонов в атоме, порядковое число или величина заряда ядра равны числу протонов в атомном ядре.

Оболочка атома образована электронами.

Они вращаются с большой скоростью в шарообразной области вокруг атомного ядра. Эту область называют электронной оболочкой атома. Электроны имеют отрицательный электрический заряд и обладают очень малой массой.

Отрицательный заряд электронов соответствует по величине положительному заряду протонов в ядре атома.

Число протонов и нейтронов в атоме одинаково, поэтому атом является электрически нейтральным к окружающей среде. Благодаря разности потенциалов электроны удерживаются на своих орбитах. Электроны группируются в электронные оболочки, которых вокруг ядра может быть до семи. Они находятся на определенном расстоянии от ядра. Число электронов в каждой оболочке ограничено определенным количеством.

Атомная масса – это масса атомного ядра. При определении атомной массы малая масса оболочки не учитывается. Атомная масса атома водорода равна массе протона, в численном выражении это 1,008. Другие атомные массы во много раз больше этого числа. Поэтому эту массу называют относительной атомной массой. Например, относительная атомная масса атома кислорода составляет 15,999 или 16.

Атомы некоторых элементов имеют одинаковое число протонов. Однако, несмотря на это, чисто нейтронов может быть разным. Атомы одного и того же элемента с разным количеством нейтронов называют изотопами. Изотопы имеют одинаковые химические свойства, но разную массу. Изотопы образуют все элементы, но количество их у всех элементов разное и большей частью ограниченное.

Радиоактивность

Изотопы некоторых элементов излучают энергию. Атомные ядра при этом распадаются. Это свойство называют радиоактивностью. Различают альфа, бета и гамма лучи. Альфа-лучи состоят из ядер гелия. Бета-лучи состоят из электронов и пронизывают даже свинцовые пластины толщиной до 1 мм. Гамма-лучи имеют очень малую длину волны и возникают в основном при превращениях ядра. Они способны проникать через метровые бетонные стены и могут задерживаться только очень толстым слоем свинца. Самые опасные для человека, гамма-лучи приводят к разрушению тканей и поражению внутренних органов.

Несмотря на опасность, применение радиоактивных материалов постоянно развивается, поскольку они являются самой дешевым и долговечным источником энергии.

Применение радиоактивных материалов в строительной технике очень широко. Их используют, например, для контроля толщины материалов при изготовлении бумаги, фольги, пленки и листовых металлических материалов.

Периодическая система элементов

Ученые давно обратили внимание на тот факт, что если исследовать свойства элементов в порядке их атомных зарядов, то окажется, что почти одинаковые свойства периодически повторяются через каждые восемь элементов. При этом получается всего семь периодов. Третий период, например, объединяет элементы от натрия до аргона. Если расположить семь периодов так, чтобы элементы с одинаковыми свойствами стояли один над другим, то получится восемь вертикальных колонок или групп. Составленная таким образом периодическая таблица элементов очень удобна и проста. Своим рождением она обязана русскому ученому Д.И. Менделееву.

Химические соединения

Различные атомы и элементы могут связываться между собой. Полученное в результате таких соединений химическое вещество называют химическим соединением. Новое вещество, образованное в результате соединения, имеет отличные от элементов, из которых оно образовалось, свойства. Яркий пример такого соединения – вода, состоящая из одного атома кислорода и двух атомов водорода. Соответственно вода имеет отличные от кислорода и водорода свойства.

Молекула – это частица химического соединения. Молекулы в соединении всегда одинаковы. Такие молекулы называются элементарными молекулами. Состав молекулы определяет состав соединения. В случае воды это три атома, молекула серы – шесть. Исключение составляют лишь инертные газы, которые состоят из свободных атомов. Система обозначения состава молекул химического соединения проста и удобна – нижний индекс после обозначения элемента означает, сколько атомов его содержится в соединении. Например, H2O, C2H5OH.

Электронные пары

Некоторые химические элементы, атомы которых укомплектованы на электронных орбитах 8 электронами, не склонны вступать в соединения с другими элементами. Как правило, они находятся в стабильном состоянии. Те же химические элементы, которые имеют меньше или больше восьми электронов на атомной орбите, стремятся перейти в стабильное состояние, поэтому они активны в реакциях с другими элементами.

Ионная связь

Атомы, которые теряют электроны, становятся положительно заряженными, а те атомы, которые приобретают электроны, становятся электрически отрицательными. Возникшие при потере или приеме электронов частицы называют ионами. Так, ионы различных элементов в случае разных потенциалов могут соединяться в связи. Такие связи называют ионными связями. В основном ионные связи имеют место в соединениях солей и металлов. Силы притяжения между ионами действуют по всем направлениям, поэтому ионы находятся в постоянном поиске связей. Чаще всего такая связь приводит к образованию прочной трехмерной решетки, образуя кристаллы.

Соединения металлов

В большинстве случаев атомы металлов имеют небольшое количество электронов на своих орбитах. При тесном контакте электроны отделяются от атомов и начинают выстраивать ионные связи в виде шарообразных частиц. За счет электрического сцепления атомы металлов очень прочно сцепляются между собой, образуя прочное тело. Поскольку силы притяжения ионов действуют в трехмерном направлении, то ионы металлов создают кристаллическую решетку.

Валентность

Из любой химической формулы можно легко понять, какие именно химические соединения были получены и из каких именно элементов. При этом сами формулы делятся на структурные и суммарные. Суммарные формулы оказывают соединения элементов одно за другим. В структурных формулах каждый атом представлен отдельно, поэтому структурная формула, кроме общего состава, дает представление о порядке связи атомов в соединении. Количество свободных электронов или возможность принять электроны определяет то, в каком числовом соотношении атомы могут вступать в химические соединения. Это число называется валентностью химического элемента, а электроны, участвующие в обмене между атомами – валентными электронами. В структурных химических формулах валентность обозначается штрихами валентности.

Анализ и синтез веществ

Под синтезом в химии понимают создание химического соединения. Получение синтетических материалов, например, пластиков, как раз и является основной задачей и основной деятельностью химической индустрии. Современные технологии позволяют синтезировать такие вещества, что строительные материалы, производимые на их основе,

Анализ – это разложение химического соединения на составляющие компоненты.

Смеси

Некоторые материалы можно смешивать. При этом они не будут вступать в реакции друг с другом, а лишь находиться в перемешанном состоянии. Получаемая путем смешивания смесь не является новым веществом, поскольку возможно ее разделение на составляющие на исходные материалы при помощи физически-механических процессов. Примеры смесей – растворы, дисперсии и легирования.

Растворы

Многие твердые, жидкие и газообразные материалы и вещества могут так тонко распределяться в жидкостях, что будут существовать в них только лишь в виде отдельных молекул. В этом случае вещество находится в воде или другой жидкости в растворенном состоянии, то есть жидкость, содержащая молекулы некоего вещества, является раствором. Жидкость, в которой содержатся молекулы вещества, называют растворителем. Любое вещество растворяется в любой жидкости до определенного предела. При наступлении критической точки предела растворяемости раствор называется концентрированным. Температура растворителя влияет на верхний порог растворяемости.

При повышении температуры растворителя порог растворяемости повышается. Раствор, далекий от насыщения веществом, называется разбавленным. Процесс растворения ускоряется при нагревании, помешивании и измельчении вещества. Выделение из раствора происходит при охлаждении в случае сильно концентрированных растворов и выпаривании растворителя. Яркий пример выпаривания растворителя в строительстве – обмазка битумной мастикой, Покраска дисперсными красками на водной основе и застывание бетона и растворов.

Разделение двух смешанных друг с другом жидкостей можно производить с помощью перегонки, или дистилляции.

Раствор жидкостей доводится до кипения, и легче испаряемая жидкость выпаривается. Затем, собранный пар охлаждается и вновь переходит в жидкое состояние. Жидкость, которая испаряется медленнее, остается в сосуде. Растворение нескольких растворенных друг в друге жидкостей производится при помощи многократной дистилляции, которую называют фракционной дистилляцией. Пример такой фракционной дистилляции – разделение сырой нефти на фракции – бензины, мазуты, смазочные материалы и битумы.

Дисперсии

Процесс, когда частицы вещества распределяются в жидкости в виде очень тонких фрагментов, не растворяясь в ней, называется дисперсией. Жидкость с распределенным в ней веществом называют дисперсионной. В случае, если тонко распределенное вещество является твердым по первоначальной структуре, такую дисперсию называют суспензией.

Если распределенное вещество является жидкостью, такую дисперсию называют эмульсией. В любой дисперсии частицы распределенного вещества со временем оседают, и образуется частичное расслоение. Поэтому перед употреблением дисперсии требуется тщательно перемешивать. Примеры дисперсий в строительстве – дисперсионные клеи и краски, сверлильные эмульсии на основе нефтепродуктов и воды для обработки металлов.

Легирование

Многие металлы в расплавленном состоянии растворяются друг в друге. После затвердевания получаемый сплав называют легированным. Свойства легированного металла зачастую значительно отличаются от свойств исходных металлов и могут превосходить их по твердости, прочности или температуре плавления. Посредством легирования создают материалы с заданными свойствами, например, сталь с присадками хрома и никеля становится устойчивой к коррозии и называется нержавеющей сталью.

Важнейшие строительные материалы и их соединения

Большинство строительных материалов представляют собой смеси разнообразных химических соединений, которые, в свою очередь, состоят из химических элементов. Одновременно с элементами углеродом, водородом, кислородом строительные материалы содержат калий, кальций, кремний, алюминий и железо. Синтетические материалы содержат хлор и азот.

Кислород

Кислород (О) – это газ без вкуса, цвета и запаха, тяжелее воздуха. Кислород необходим для дыхания человека и животных, не горюч, но поддерживает горение. В среде чистого кислорода могут гореть и сгорать даже негорючие материалы, например, многие металлы.

Воздух содержит около 21% кислорода. Также кислород содержится в земной коре в связанном состоянии, а также выделяется растениями при помощи фотосинтеза из углекислого газа.

В строительстве кислород применяется при сварке и резке металла, для производства стали и в качестве кислородного разделителя бетона и заполнителя.

Кислород является природным окислителем многих элементов. Молекулы вещества соединяются с молекулами кислорода, образуя оксиды. Такой процесс называют окислением. Для получения вещества из оксида применяют тепло, при котором молекулы кислорода покидают соединение. Этот процесс называют раскислением, или восстановлением.

Водород

Водород (Н) – это бесцветный газ без запаха. Водород – самое легкое вещество среди химических элементов. Смесь водорода и кислорода в пропорции 2:1 очень взрывоопасна.

В природе водород практически не встречается в чистом виде, однако в избытке содержится в химически связанном состоянии в воде и в ископаемых горючих веществах. Промышленность получает водород в основном из нефти или природного газа.

Водород применяют в химической промышленности и сварочной технике.

Углерод

Углерод в чистом виде встречается в природе в виде графита и алмазов. В химически связанном виде углерод присутствует в земных недрах, например, в виде известняка, в растительных окаменелостях, в каменном угле, торфе и природном газе. Вместе с этим углерод является частью биомассы растений и животных. В воздухе углерод присутствует в виде углекислого газа.

Графит – это мягкое красящее вещество черного цвета. Алмаз бесцветен, стекловиден, хрупок, но очень крепок.

Углерод применяется в промышленности как кокс для получения железа, в виде сажи для наполнителя при производстве резины, в качестве углеродных волокон для армирования пластмасс, и в качестве алмазов для режущих и полировальных инструментов.

Различают органические и неорганические соединения углерода. Неорганическое соединения – это угарный газ, углекислый газ, углекислота и ее соли, а также карбиды.

Угарный газ (СО) получается при сжигании углеродосодержащий веществ при недостаточном снабжении кислородом. Угарный газ бесцветен и не имеет запаха. Горит угарный газ синеватым пламенем и очень ядовит. В химической промышленности угарный газ применяют для производства пластмасс и растворителей.

Углекислый газ (СО2) получается при сжигании углеродосодержащих веществ. Углекислый газ не горюч, не имеет запаха. Он абсолютно не ядовит. Единственная опасность углекислого газа состоит в том, что будучи существенно тяжелее воздуха, он может скапливаться в низких недостаточно проветриваемых местах и вытесняет кислород.

Углекислый газ выделяется в атмосферу при сжигании топлива и существенно влияет на климат земли. Повышенная концентрация углекислого газа ведет к нагреванию атмосферы, и как следствие к парниковому эффекту.

Органические соединения углерода – углеводороды. По строению молекул различают цепные, кольцеобразные, а также разветвленные углеводороды. В цепных углеводородах атомы углерода располагаются в ряд друг за другом, а свободные валентности заняты атомами кислорода. Цепи углерода, содержащие до пяти атомов, являются газообразными. Цепи, в которых содержится от 6 до 12 атомов – жидкие, те из них, что содержат от 12 до 15 атомов – пастообразные, например, стеарин.

Бензин представляет собой смесь жидких углеводородов, где атомы углерода соединяются между собой посредством 2 или 3 валентностей. Такие соединения называют ненасыщенными. Ненасыщенные углеводороды также – это газы ацетилен и этилен.

Простейшим кольцеобразным соединением углеводородов является бензол. Производная от бензола – фенол. Кольцеобразные ненасыщенные углеводороды являются важным исходным материалом для химической промышленности, для производства пластмасс. Другие органические соединения углерода, содержащие наряду с водородом химические элементы кислород, хлор и азот, являются алканолы (спирты), альдегиды (алканалы), органические кислоты (спиртовые кислоты) и хлорированные углеводороды.

Кислоты

При растворении оксидов неметаллов в воде образуются кислоты. Например, при растворении хлора и водорода образуются соляная и фтористая кислота.

Образование ионов

Молекулы кислот в водных растворах могут полностью или частично расщепляться на водородные ионы и остаточные ионы кислот. Поэтому кислотно-водные растворы проводят электрический ток. Кислородные ионы носят название катионы, а кислородного остатка называют анионами.

Свойства кислот определяются отколовшимися ионами водорода. Поэтому кислоты действуют только в водных растворах. Сила действия любой кислоты зависит от количества отделившихся ионов.

Наиболее сильными кислотами являются соляная, азотная и серная кислоты. Средними кислотами считаются фосфорная и фтористая кислоты. Слабые кислоты – это угольная и синильная кислота.

Важнейшие кислоты

Соляная кислота разлагает известняк, при отделении двуокиси азота. Разбавленная соляная кислота применяется для очистки кирпичной кладки и удаления известковых отложений с поверхности.

Серная кислота как составляющая кислотных дождей образует вместе с нерастворимыми в воде известняками водорастворимый сульфат кальция, который либо уносится с водой, либо приводит к повреждениям строительных конструкций за счет кристаллизации и связанным с этим явлением увеличением объема и отслоениями материала. Серная кислота гигроскопична, то есть притягивает воду. Поэтому одно из основных правил разбавления серной кислоты требует вливать ее в воду, а не наоборот.

Угольная кислота образуется в основном соединениями дымовых газов, содержащих СО2 с содержащейся в воздухе влагой. Вода, содержащая угольную кислоту, разрушает содержащие известь вяжущие вещества.

Азотная кислота состоит из аммиака, который получается при разложении органических материалов, например, в канализационных стоках. Соединяясь с содержащими известь материалами образуется водорастворимый сульфат кальция, который может повредить строительные конструкции. Азотная кислота является сильным окислителем, поэтому при соединении с органическими веществами, тканью или древесиной может вызвать возгорание.

Щелочи

Реакции щелочных металлов, таких как натрий или растворимых окислов металлов с водой образуют щелочи. При выпаривании воды получают твердую бесцветную массу гидрата окиси металла, называемую основанием. Щелочное действие наступает только при соединении с водой.

Молекулы щелочи распадаются в водном растворе частично или полностью на положительно заряженные ионы металла, например на ионы (катионы) или отрицательно заряженные ионы (анионы).

Щелочи проводят электрический ток, поэтому называются электролитами.

Сильными щелочами является натриевая щелочь, калиевая щелочь и кальциевая щелочь. Слабой щелочью считается водный раствор аммиака, называемый нашатырем.

Гашеная известь – это натриевая щелочь. Она применяется для приготовления различных строительных растворов.

Величины РН

Зачастую перед применением того или иного вещества следует проверить, насколько сильным является оно как кислота или щелочь. Мерой для этого является величина РН. Величина РН определяется по шкале от 1 до 14. нейтральным значением является величина 7, такую величину имеет дистиллированная вода.

Растворы с величинами от 0 до 7 являются кислыми, чем меньше величина, тем выше кислотность раствора, а растворы с величинами от 7 до 14 – щелочные, чем выше значение величины, тем более щелочным является раствор. Замер величины РН происходит при помощи индикаторной (лакмусовой) бумаги, которая изменяет свой цвет в зависимости от величины РН раствора. Наряду с индикаторной бумагой применяются также и индикаторные жидкости, и электронные приборы для замеров уровня РН.

Соли

Соль – это совокупность металла и кислотного остатка. Соли, как и щелочи и кислоты, распадаются в воде на ионы и проводят электрический ток. Соли получаются при нейтрализации кислот и щелочей, а также при реакции кислот с металлами или окислами металлов. Химическое название солей указывает на их происхождение, то есть на кислоту и металл, которые участвовали в получении данной соли. В химических процессах более сильная кислота всегда вытесняет более слабую кислоту из ее соли и образует новую соль. Растворимость солей в воде различается.

Силикаты, например, нерастворимы или трудно растворимы в воде, тогда как нитраты весьма легко растворяются. Растворенные в воде соли после выпаривания воды образуют кристаллы. Например, сульфат кальция, который называют гипсом, нитрат кальция (стеновая селитра), притягивают воду с увеличением собственного объема.

Соли, используемые в строительстве

Карбонат кальция не растворим в воде, и является основой всех природных камней, в частности известняка и мрамора.

Сульфат кальция, или гипс, и сульфат магния являются прекрасными вяжущими веществами. Однако при контакте с кислотами они превращаются в легко растворимые в воде соли, что может привести к существенным проблемам, таким как откалывание или намывание материала.

Силикат кальция не растворяется в воде и получается при твердении известей и цементов. Силикат калия, силикат магния, силикат кальция, силикат алюминия являются важными компонентами многих строительных материалов.

Силикат натрия используется для строительства средств пожаротушения.

Нитрат кальция, или стеновая селитра, образуется при гниении органических веществ и может разрушать строительные конструкции.

Кислоты, соли и щелочи действуют только в присутствии воды. Поэтому тщательная гидроизоляция строительных конструкций препятствует проникновению и транспортировке разрушающих веществ в здание, а, следовательно, защищает сооружения от разрушения.

Вода

Круговорот воды в природе – необходимое для поддержания жизни условие. Вода испаряется с поверхности земли, в виде водяного пара поднимается к стратосфере и при достаточном охлаждении выпадает в виде осадков.

Природная вода всегда насыщена различными веществами – минеральными солями и прочими примесями и никогда не является чистой. Содержание солей определяет жесткость воды. Основные соли, влияющие на жесткость воды – это соли кальция.

Вода из озер, рек и источников насыщена солями кальция и магния. Дождевая вода, испаряясь и находясь в воздухе в виде дистиллированной воды, выпадая в виде осадков, соприкасается с воздухом и получает из него частицы пыли и грязи, а также углерод и двуокись серы, становясь слабокислой.

Таким образом, достаточно загрязненный воздух может создать предпосылки к выпадению так называемых «кислотных дождей». Кислоты, образующиеся в результате загрязнения воздуха, попадают в дождевую воду, а оттуда — на поверхность строительных конструкций, разрушая их. Также кислоты проникают в почву и с грунтовыми водами попадают в подземные водоносные слои, частично разлагаясь, соединяясь с щелочными отложениями.

Грунтовая вода, просачиваясь после осадков на значительные глубины, заполняет пустоты в земной коре. Во время просачивания слои почвы выполняют функцию природных фильтров, очищая воду от примесей, а залежи различных ископаемых насыщают воду минеральными веществами. Вода, пройдя сквозь фильтрующие и дренирующие слои, скапливается над непроходимыми подошвами.

Под действием естественной силы тяжести вода стекает в естественные подземные резервуары, где накапливается. Такие грунтовые воды могут выходить на поверхность в виде ключей, ручьев или колодцев. Давление воды в подземном резервуаре порой достигает такой силы, что, пробурив скважину в такой водоем, можно получить артезианский источник, в котором вода будет подниматься на поверхность без помощи насосов.

Вода в природе может находиться в трех состояниях – жидком, твердом и газообразном. Температура замерзания воды составляет 0 градусов Цельсия, превращаясь в лед. Необходимо 335 кДж энергии, чтобы вновь превратить лед в воду. Испаряется вода при температуре сто градусов. Для испарения одного кг воды необходимо затратить 2250 кДж тепла.

Водяной пар превращается в конденсат при охлаждении ниже 100°С, что является точкой конденсации водяного пара.

Наибольшую плотность вода имеет при температуре +4°С.

Вода, превращаясь в лед, расширяется, увеличиваясь в объеме. Расширение воды составляет примерно 10% от ее объема в жидком состоянии. Такое свойство встречается только у воды, и является аномалией среди физических и химических свойств веществ.

Вода довольно широко применяется в строительной технике, например как вода затворения для приготовления бетона и раствора, в качестве текучего транспортирующего средства, например, при укладке бетона и его твердении, при уходе за бетоном в процессе застывания, в качестве растворителя для приготовления клеев и красок, для очистки поверхностей и для многого другого.

Однако, наряду с пользой, вода также может наносить и вред, а именно:

При дожде из воздуха на поверхность строительных конструкций могут транспортироваться вредные вещества, разрушающие конструкции

При высоком содержании вредных веществ в грунтовых водах они могут транспортироваться в конструкции путем капиллярной транспортировки

Водяной пар, попадая в конструкции, ослабляет защитные, теплоизоляционные и звукопоглощающие их свойства

Замерзая, вода увеличивается в объеме, и, попадая в жидком виде в трещины конструкций и покрытий, превращаясь в лед, разрывает их.

Защита окружающей среды от загрязнений

Загрязнение окружающей среды – это загрязнение воздуха, воды и земли вредными или токсичными веществами неестественного происхождения. Шум и излучения также являются загрязнениями окружающей среды. Загрязнение окружающей среды, помимо вреда здоровью человека, животным и растениям, наносит ущерб строительным конструкциям.

При сгорании твердого и жидкого топлива образуются вредные вещества, например двуокись углерода, двуокись серы, оксид азота, угарный газ.

Эти вещества являются причиной «кислотных дождей». Растворяясь, углероды, которые находятся в составе жидкого топлива и разбавителей, а также татрахлоруглерод, который находится в составе растворителей и чистящих средств, попадают в воздух.

Отдельные из этих веществ являются причиной все усиливающегося парникового эффекта и общего потепления климата Земли. Также отдельные вредные вещества вступают в реакции с озоновым слоем планеты, уничтожая его, что ведет к усилению ультрафиолетового излучения, вредного для здоровья живых организмов и растений. Озоновый слой служит фильтром для защиты поверхности Земли от избыточного ультрафиолетового излучения. Влияние вредных промышленных и бытовых выбросов в атмосферу влечет за собой необратимый процесс разрушения озонового слоя, что является основной опасностью для человечества в настоящее время.

Отходы нефтехимии обладают канцерогенными свойствами. При небрежном к ним отношении они попадают в коллекторы и канализационные сети, накапливаются там либо со стоками уходят в грунтовые и поверхностные воды, уничтожая все живое в водоемах. Сильно загрязненный водоем, лишенный растительности и живых существ, скоро теряет свою ценность и как источник питьевой воды.

В связи с этим при проведении строительных работ требуется обязательное соблюдение правил по защите от загрязнения окружающей среды, а именно:

Экономия энергии за счет ограничения потребления топлива и улучшения теплоизоляции зданий и сооружений

Очистка выхлопных газов посредством установки фильтров

Использование возобновляемых источников энергии и природной энергии, таких как ветровая, солнечная энергия, энергия морских и океанских приливов, гидроэлектростанции и прочее.

Вода, которая используется в строительстве, как правило, отводится после использования прямо в стоки и канализационные сети. Однако существуют некоторые вещества, которые не должны попадать в канализацию. К ним относятся:

Строительный мусор, вяжущие вещества и раствор, которые могут привести к засорениям коллекторов

Пожароопасные вещества, которые могут привести к пожару внутри коллектора, достигнув определенной концентрации

Взрывоопасные вещества

Ядовитые вещества

Кислоты, щелочи и средства защиты древесины

Особенно вредное для окружающей среды загрязнение наносится сливом в канализационные сети и коллекторы старых отработанных масел, мазута, остатков растворов для защиты древесины. Слив этих веществ в канализационные сети приводит к отравлению грунтовых вод и естественных водоемов. Такие вещества необходимо утилизировать при помощи специальных лицензированных организаций, которые перерабатывают их, не загрязняя окружающую среду.

Различные отходы производства необходимо утилизировать как ценные материалы или специальные отходы. Вторично используемые материалы, такие как дерево, цветные и черные металлы, стекло, картон, собранные и сданные на переработку, не только сохранят окружающую среду, но и сократят бюджет строительства. Кроме того, использование безотходных технологий, например, строительство из готовых блоков, благотворно влияет на общую экологию района, что положительно сказывается и на стоимости будущей недвижимости.

Производственные отходы, не пригодные к переработке и повторному использованию, сжигаются на специальных предприятиях, оборудованных согласно требованиям защиты окружающей среды. Печи для сжигания отходов на таких предприятиях оборудуют защитой и фильтрами, практически полностью исключающими выбросы вредных продуктов сгорания в атмосферу.

Те из негодных к переработки отходы, которые не горят, должны утилизироваться в специально отведенных местах, которые находятся в специально отведенных районах и представляют собой хорошо укрепленные и изолированные от контакта с грунтовыми водами котлованы или площадки, где складируются непригодные к переработке или сжиганию отходы.

Внимание! Данная статья написана эксклюзивно для сайта www.сайт. Полная или частичная перепечатка материалов возможна только при условии размещения прямой (индексируемой поисковыми системами) ссылки на источник (например: ).

Химические соединения – сложные вещества, состоящие из химически связанных атомов двух или нескольких химических элементов. Термин «соединение» означает: разные части так связаны друг с другом, что возникло новое вещество, с другими свойствами, чем у исходных веществ. В химическом соединении связи таковы, что уже нельзя различить свойства отдельных компонентов.
Так, например, нельзя обнаружить свойства серы или меди в CuSO 4 .

Химические реакции - динамические процессы, вызванные электрическим притяжением между участками молекул реагирующих веществ имеющих разный знак заряда, связанные либо с изменением строения электронных оболочек, либо с их трансформацией в новую электронную оболочку продукта реакции.

Все химические и большинство физических свойств веществ зависят от строения электронных оболочек , составляющих их атомов, а химическое соединение тем и отличается от физической смеси, что в нём часть электронов обобществлена; они образуют химические связи между атомами. Поэтому важным свойством химических соединений, отличающим их от механических смесей, является однородность. Состав химического соединения записывают в виде химических формул, а взаимное расположение атомов изображают при помощи структурных формул.

Химические соединения образуются либо при взаимодействии простых веществ, либо в результате химических реакций других соединений. Образование химических соединений всегда сопровождается выделением или поглощением энергии. Не обязательно теплоты – так, в аккумуляторах и гальванических элементах (старых батарейках) образование химических соединений сопровождается возникновением электродвижущей силы, а в ракетном двигателе большая часть энергии, выделяющейся при образовании химических соединений топлива с окислителем, превращается в механическую энергию движения ракеты.

Почему же, при образовании химических соединений происходит поглощение или выделение энергии? Общая теория взаимодействий описывает процесс образования химических соединений, как результат электрического взаимодействия атомов или молекул. Атомы и молекулы представляют собой совокупность изменяющихся пространственно направленных электрических сил. Для примера на рисунке показаны атом водорода и молекула воды.

Синим на рисунках обозначен отрицательный заряд электрона, красным положительный заряд ядра.


При образовании химического соединения, происходящего в результате процесса электрического притяжения разно заряженных зон атома или молекулы, происходят изменения в расположении электронов относительно ядер атомов . Чем больше степень изменения электронной оболочки, произошедшая в результате реакции тем больше величина энергии, необходимой для того, чтобы реакция произошла, или выделяющейся в результате такой реакции.

Если расположение электронов в продуктах реакции является менее энергетическим, по сравнению с исходными продуктами, то есть электроны располагаются ближе к ядру или более правильно (симметрично), то энергия выделяется (чаще всего в виде теплоты). В противном случае энергия электронов должна возрасти, то есть для проведения реакции образования химического соединения необходимо затратить энергию.

Так как практически никогда суммарная энергия электронов в результате реакции не остаётся прежней, то и процессы образования химических соединений сопровождаются выделением или поглощением энергии.

Химические реакции

Химические реакции - процессы образования веществ и химических соединений протекающие с изменением электронных оболочек.

В переводе с латыни «реакция» означает «противодействие, отпор, ответное действие». Следовательно термин химическая реакция можно понимать как ответное действие вещества на воздействие извне других веществ и физических факторов – тепла, давления, излучения… Но под такое определение подпадают и физические процессы: плавление, кипение, замерзание и другие. Поэтому следует уточнить, что химическая реакция – это такое изменение вещества, при котором разрываются старые и образуются новые связи между атомами. Подробности о химической связи .

Что значит изучать химическую реакцию?

Изучать химическую реакцию - значит искать ответы на вопросы: почему она происходит, каков её механизм, от чего и как зависят её скорость и степень превращения исходных веществ в продукты, какие катализаторы способны её ускорить и какие ингибиторы – замедлить?

«Движущая сила» реакции зависит не только от природы реагентов и образующихся веществ (их состава, строения), но и от концентрации веществ, температуры, давления, влияния растворителей, соединений, способных образовывать комплексы с реагентами и продуктами.

Для записи химических реакций используют уравнения, молекулы реагирующих веществ и продуктов изображают с помощью химических формул. Чтобы написать уравнение химической реакции, нужно знать точные химические формулы всех реагирующих веществ и продуктов реакции. Числовые коэффициенты для каждой формулы подбираются так, чтобы число атомов всех элементов в левой части уравнения было равно числу атомов этих же элементов в правой части. По уравнениям химических реакций можно рассчитать массы реагирующих веществ и продуктов реакции.

Попробуем рассмотреть приведённые выше вопросы, касающиеся изучения химической реакции с точки зрения общей теории взаимодействий .

1. Почему происходит химическая реакция?

Реакция может произойти только в том случае, когда величина силы электрического притяжения различных зон реагирующих атомов превосходит силу электрического отталкивания. Мы уже знаем, что любой атом или молекулу можно представить в виде определённой совокупности векторов электрической напряжённости. Проще говоря, какая-то часть поверхности реагирующего атома или молекулы имеет положительный заряд, а остальная часть поверхности отрицательный. Примеры в предыдущей главе и ниже. Так вот, если сила притяжения между разно заряженными областями поверхности атома или молекулы превосходит силу отталкивания , то реакция происходит. Мы можем влиять на величину взаимодействия, изменяя температуру, давление или другие параметры.

2. Каков механизм химической реакции?

В принципе мы уже ответили на этот вопрос. Стоит лишь уточнить, что зная пространственное расположение областей положительного и отрицательного заряда на поверхности реагентов, мы можем выбирать наименее энергозатратный механизм осуществления химической реакции .

3. От чего и как зависят скорость химической реакции и степень превращения исходных веществ в продукты?

Ответ на этот вопрос можно дать, используя информацию приведённую выше. Если большая часть поверхности реагентов имеет разные электрические заряды, то для начала реакции не требуется энергетических затрат, необходимо лишь заставить вещества соприкасаться и реакция начнётся. Течение реакции и её скорость будут зависеть от получаемых продуктов и выделяющейся в результате энергии.

То есть, в конечном итоге, скорость химической реакции зависит от силы электрического притяжения разно заряженных областей взаимодействующих атомов.

В том случае, когда продукты не мешают протеканию дальнейшей реакции, процесс продолжается до полного использования исходных реагентов.
Если же в результате реакции происходит выделение энергии, и эта энергия способствует ускорению течения реакции, то процесс проходит бурно, часто со взрывом.
Когда продукты реакции остаются в зоне происходящих химических процессов, они могут тормозить (вмешиваясь своими электрическими полями) дальнейший ход реакции, а при определённых условиях происходит обратная реакция распада продуктов на исходные реагенты.

4. Влияние катализаторов и ингибиторов

также рассчитывается исходя из распределения на поверхности их атомов или молекул электрического заряда. Здесь обязательно следует отметить, что в случае с катализаторами и ингибиторами особую роль приобретает форма распределения электрического заряда на их поверхности. Так как в противном случае такие вещества могут стать реагентами и нарушить необходимое течение химических процессов.

Классификация химических реакций

1. Химические реакции различаются по числу и составу реагирующих веществ :
а) реакции, идущие без изменения состава взаимодействующих веществ: в неорганической химии примерами таких химических реакций являются процессы изменения аллотропных модификаций одного и того же химического элемента (графит переходит в алмаз, кислород в озон);
в органической химии примерами будут реакции изомеризации алканов, алкенов, алкинов и другие, идущие без изменения не только качественного, но и количественного состава реагентов.

б) химические реакции протекающие с изменением состава веществ : реакции соединения, замещения, обмена и разложения.

2. Реакции можно классифицировать по изменению степеней окисления химических элементов взаимодействующих в химической реакции:
а) окислительно-восстановительные химические реакции идут с изменением степени окисления;
б) реакции без изменения степени окисления реагентов.

3. Химические реакции делятся и по тепловому эффекту , возникающему в результате взаимодействий атомов или молекул:
а) экзотермические - с выделением тепла (или энергии);
б) эндотермические - с поглощением энергии.

Подробнее об этом. Если в результате реакции образовались вещества электронные оболочки которых обладают меньшей совокупной энергией, чем та которой они обладали до начала реакции, то тепло выделяется (или увеличивается объём). Сама совокупная энергия электронной оболочки зависит, как от расстояния между электронами и ядрами, так и от правильности электронной оболочки. И если образующаяся электронная оболочка не совсем правильна химическая реакция продолжается, и мы имеем химическую реакцию, протекающую в несколько стадий. Именно к таким реакциям относятся реакции с участием катализаторов.

4. По участию в процессе взаимодействия катализатора , химические реакции делятся на каталитические и не каталитические (более 70% всех реакций относятся к каталитическим).
Почему катализаторы ускоряют химическую реакцию? Потому, что они на некоторое время "дают в пользование" реагирующим веществам необходимые электроны, или, что бывает значительно чаще, они на время забирают лишние электроны у реагентов, тем самым увеличивая зону положительного заряда на одном из атомов. А это, как мы описали выше, приводит к увеличению скорости химической реакции.

5. По присутствию в реакции веществ , находящихся в разных агрегатных состояниях химические реакции подразделяют на гетерогенные (реагенты и продукты находятся в различных агрегатных состояниях) и гомогенные (все реагенты и продукты присутствуют в одной фазе).

6. По направлению течения, химические реакции могут быть обратимыми (идущими в обоих направлениях) или необратимыми.

7. Есть также классификация химических реакций по виду энергии инициирующей реакцию : фотохимические, радиационные, термохимические и электрохимические.

Все вещества можно разделить на простые (состоящие из атомов одного химического элемента) и сложные (состоящие из атомов разных химических элементов). Простые вещества делятся на металлы и неметаллы .

Металлы обладают характерным “металлическим” блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы, кроме ртути, находятся в твердом состоянии.

Неметаллы не обладают блеском, хрупки, плохо проводят теплоту и электричество. При комнатной температуре некоторые неметаллы находятся в газообразном состоянии.

Сложные вещества делят на органические и неорганические.

Органическими соединениями принято называть соединения углерода. Органические соединения входят в состав биологических тканей и являются основой жизни на Земле.

Все остальные соединения называются неорганическими (реже минеральными). Простые соединения углерода (СО, СО 2 и ряд других) принято относить к неорганическим соединениям, их обычно рассматривают в курсе неорганической химии.

Классификация неорганических соединений

Неорганические вещества делят на классы либо по составу (бинарные и многоэлементные; кислородосодержащие, азотсодержащие и т.п.), либо по функциональным признакам.

К важнейшим классам неорганических соединений, выделяемых по функциональным признакам, относятся соли, кислоты, основания и оксиды.

Соли – это соединения, которые в растворе диссоциируют на катионы металла и кислотные остатки. Примерами солей могут служить, например, сульфат бария BaSO 4 и хлорид цинка ZnCl 2 .

Кислоты – вещества, диссоциирующие в растворах с образованием ионов водорода. Примерами неорганических кислот могут служить соляная (НCl), серная (H 2 SO 4), азотная (HNO 3), фосфорная (H 3 PO 4) кислоты. Наиболее характерное химическое свойство кислот – их способность реагировать с основаниями с образованием солей. По степени диссоциации в разбавленных растворах кислоты подразделяются на сильные кислоты, кислоты средней силы и слабые кислоты. По окислительно–восстановительной способности различают кислоты–окислители (HNO 3) и кислоты–восстановители (HI, H 2 S). Кислоты реагируют с основаниями, амфотерными оксидами и гидроксидами с образованием солей.

Основания – вещества, диссоциирующие в растворах с образованием только гидроксид-анионов (OH 1-). Растворимые в воде основания называют щелочами (КОН, NaOH). Характерное свойство оснований – взаимодействие с кислотами с образованием соли и воды.

Оксиды – это соединения двух элементов, один из которых кислород. Различают оксиды основные, кислотные и амфотерные. Основные оксиды образованы только металлами (CaO, K 2 O), им соответствуют основания (Ca(OH) 2 , KOH). Кислотные оксиды образуются неметаллами (SO 3 , P 2 O 5) и металлами, проявляющими высокую степень окисления (Mn 2 O 7), им соответствуют кислоты (H 2 SO 4 , H 3 PO 4 , HMnO 4). Амфотерные оксиды в зависимости от условий проявляют кислотные и основные свойства, взаимодействуют с кислотами и основаниями. К ним относятся Al 2 O 3 , ZnO, Cr 2 O 3 и ряд других. Существуют оксиды, не проявляющие ни основных, ни кислотных свойств. Такие оксиды называются безразличными (N 2 O, CO и др.)



Классификация органических соединений

Углерод в органических соединениях, как правило, образует устойчивые структуры, в основе которых лежат углерод-углеродные связи. В способности образовывать такие структуры углерод не имеет себе равных среди других элементов. Большинство органических молекул состоит из двух частей: фрагмента, который в ходе реакции остаётся без изменения, и группы, подвергающейся при этом превращениям. В связи с этим определяется принадлежность органических веществ к тому или иному классу и ряду соединений.

Неизменный фрагмент молекулы органического соединения принято рассматривать в качестве остова молекулы. Он может иметь углеводородную или гетероциклическую природу. В связи с этим можно условно выделить четыре больших ряда соединений: ароматический, гетероциклический, алициклический и ациклический.

В органической химии также выделяют дополнительные ряды: углеводороды, азотсодержащие соединения, кислородосодержащие соединения, серосодержащие соединения, галогеносодержащие соединения, металлоорганические соединения, кремнийорганические соединения.

В результате комбинации этих основополагающих рядов образуются составные ряды, например: "Ациклические углеводороды", "Ароматические азотсодержащие соединения".

Наличие тех или иных функциональных групп либо атомов элементов определяет принадлежность соединения к соответствующему классу. Среди основных классов органических соединений выделяют алканы, бензолы, нитро- и нитрозосоединения, спирты, фенолы, фураны, эфиры и большое количество других.

Типы химических связей

Химическая связь – это взаимодействие, удерживающее два или несколько атомов, молекул или любую комбинацию из них. По своей природе химическая связь представляет собой электрическую силу притяжения между отрицательно заряженными электронами и положительно заряженными атомными ядрами. Величина этой силы притяжения зависит главным образом от электронной конфигурации внешней оболочки атомов.

Способность атома образовывать химические связи характеризуется его валентностью. Электроны, участвующие в образовании химической связи, называются валентными.

Различают несколько типов химических связей: ковалентную, ионную, водородную, металлическую.

При образовании ковалентной связи происходит частичное перекрывание электронных облаков взаимодействующих атомов, образуются электронные пары. Ковалентная связь оказывается тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Различают полярную и неполярную ковалентные связи.

Если двухатомная молекула состоит из одинаковых атомов (H 2 , N 2), то электронное облако распределяется в пространстве симметрично относительно обоих атомов. Такая ковалентная связь называется неполярной (гомеополярной). Если же двухатомная молекула состоит из разных атомов, то электронное облако смещено к атому с большей относительной электроотрицательностью. Такая ковалентная связь называется полярной (гетерополярной). Примерами соединений с такой связью могут служить HCl, HBr, HJ.

В рассмотренных примерах каждый из атомов обладает одним неспаренным электроном; при взаимодействии двух таких атомов создается общая электронная пара – возникает ковалентная связь. В невозбужденном атоме азота имеется три неспаренных электрона, за счет этих электронов азот может участвовать в образовании трех ковалентных связей (NH 3). Атом углерода может образовать 4 ковалентных связи.

Перекрывание электронных облаков возможно только при их определенной взаимной ориентации, при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам. Другими словами, ковалентная связь обладает направленностью.

Энергия ковалентных связей находится в пределах 150–400 кДж/моль.

Химическая связь между ионами, осуществляемая электростатическим притяжением, называется ионной связью . Ионную связь можно рассматривать как предел полярной ковалентной связи. В отличие от ковалентной связи ионная связь не обладает направленностью и насыщаемостью.

Важным типом химической связи является связь электронов в металле. Металлы состоят из положительных ионов, которые удерживаются в узлах кристаллической решетки, и свободных электронов. При образовании кристаллической решетки валентные орбитали соседних атомов перекрываются и электроны свободно перемещаются из одной орбитали в другую. Эти электроны уже не принадлежат определенному атому металла, они находятся на гигантских орбиталях, которые простираются по всей кристаллической решетке. Химическая связь, осуществляемая в результате связывания положительных ионов решетки металла свободными электронами, называется металлической.

Между молекулами (атомами) веществ могут осуществляться слабые связи. Одна из самых важных – водородная связь , которая может быть межмолекулярной и внутримолекулярной . Водородная связь возникает между атомом водорода молекулы (он заряжен частично положительно) и сильно электроотрицательным элементом молекулы (фтор, кислород и т.п.).

Энергия водородной связи значительно меньше энергии ковалентной связи и не превышает 10 кДж/моль. Однако этой энергии оказывается достаточно для создания ассоциаций молекул, затрудняющих отрыв молекул друг от друга. Водородные связи играют важную роль в биологических молекулах (белках и нуклеиновых кислотах), во многом определяют свойства воды.

Силы Ван-дер-Ваальса также относятся к слабым связям. Они обусловлены тем, что любые две нейтральных молекулы (атома) на очень близких расстояниях слабо притягиваются из-за электромагнитных взаимодействий электронов и ядер одной молекулы с электронами и ядрами другой.

Химическое соединение (hs) Химическое соединение (сложное вещество ) - сложное вещество, состоящее из химически связанных атомов двух или нескольких элементов. Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (например, азот ~N_2, кислород ~O_2 и др.). Состав химического соединения записывается в виде химических формул, а строение часто изображается структурными формулами.

Химический элемент

Химический элемент - это множество атомов с одинаковым зарядом ядра, числом протонов, совпадающим с порядковым или атомным номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Дмитрия Ивановича Менделеева . Формой существования химических элементов в свободном виде являются простые вещества (одноэлементные)

Химические соединения и химические элементы

Химические соединения - химически индивидуальное вещество, состоящее из атомов различных элементов. Важный признак химического соединения - однородность и постоянство состава - соединение химических элементов.

Неорганических 100 000 соединений

Органических 3 000 000 соединений

Свойства химических соединений - Физические и химические свойства химических соединений отличаются от свойств веществ, из которых они получены. Химические соединения разделяются на неорганические и органические. Известно более 100 тыс. неорганических и более 3 млн органических соединений. Каждое химическое соединение, которое описано в литературе, имеет уникальный цифровой идентификатор, число CAS.

Органические химические соединения - Органическая химия, естественнонаучная дисциплина, предметом изучения которой являются соединения углерода с др. элементами, называемые органическими соединениями, а также законы превращения этих веществ. Углерод образует соединения с большинством элементов и обладает наиболее выраженной способностью по сравнению с др. элементами к образованию молекул цепного и циклического строения. Скелет таких молекул может состоять из практически неограниченного числа атомов углерода, непосредственно соединённых друг с другом, или включать наряду с углеродом атомы др. элементов. Для соединений углерода наиболее характерно явление изомерии, т. е. существование веществ, одинаковых по составу и молярной массе, но различающихся последовательностью сцепления атомов или расположением их в пространстве и вследствие этого по химическими и физическим свойствам. В результате этих особенностей число органических веществ чрезвычайно велико, к 70-м гг. 20 в. известно более 3 млн., в то время как соединений всех остальных элементов - немногим более 100 тыс.

Органические соединения способны к сложным и многообразным превращениям, существенно отличным от превращений неорганических веществ, и играют основную роль в построении и жизнедеятельности растительных и животных организмов. К органическим соединениям относятся углеводы и белки, с которыми связан обмен веществ; гормоны, регулирующие этот обмен; нуклеиновые кислоты, являющиеся материальными носителями наследственных признаков организма; витамины и др. О. х. представляет собой т. о. как бы своеобразный «мост» между науками, изучающими неживую материю и высшую форму существования материи - жизнь. Многие явления и закономерности химической науки, например изомерия, впервые были открыты при изучении именно органических соединений.

Химические соединения металлов, химическое соединение водорода с металлом, химическое соединение железа с углеродом

химическая реакция соединения

Реакции химические - превращение одних веществ в другие, отличные от исходных по химическому составу или строению. Общее число атомов каждого данного элемента, а также сами химические элементы, составляющие вещества, остаются в Р. х. неизмененными; этим Р. х. отличаются от ядерных реакций. Р. х. осуществляются при взаимодействии веществ между собой или при внешних воздействиях на них температуры, давления, электрического и магнитного полей и т.п. В ходе Р. х. одни вещества (реагенты) превращаются в другие (продукты реакции), что записывается в виде уравнений химических. Реагенты и продукты реакции часто носят общее название реактанты. Каждая Р. х. характеризуется стехиометрическим соотношением реактантов и скоростью химической реакции. Совокупность отдельных стадий Р. х., установленная экспериментально или предложенная на основе теоретических представлений, называется механизмом реакции.

Любая Р. х. обратима, хотя скорости прямой и обратной реакций могут при этом существенно отличаться. Когда скорости прямой и обратной реакций равны, система находится в равновесии химическом. В положении равновесия или вблизи него поведение системы описывается законами и соотношениями термодинамики химической. В целом изучение механизмов и скоростей как обратимых, так и практически необратимых Р. х. составляет предмет химической кинетики, а при учёте также и физических процессов в системе (диффузия, теплопередача и др.) - предмет макрокинетики. При изучении Р. х. на молекулярном уровне используют представления о взаимодействии атомов и молекул при их столкновениях друг с другом, с электронами и др. частицами, о превращениях молекул при поглощении и испускании фотонов и т.п. Этот подход базируется, как правило, на квантовой теории и связан в основном с изучением элементарного акта Р. х., т. е. отдельного процесса столкновения молекул реактантов. Квантовомеханическое описание элементарного акта базируется на одном из двух подходов. При временном подходе элементарный акт рассматривается как процесс рассеяния подсистем (атомов, молекул, ионов) при их столкновении. Согласно стационарному подходу, исследуется движение конфигурационной точки (изображающей ядерную конфигурацию всей системы реактантов) по потенциальной поверхности, определяемой взаимодействием подсистем реактантов, в частности ядер молекул в усреднённом поле электронов. Начало стационарному подходу было положено введением представления об активированном комплексе. При сравнительном рассмотрении реакций, особенно в органической химии, пользуются обычно представлениями о наиболее вероятных механизмах реакций и об активности реагентов в определённых классах реакций, такими как реакционная способность, ориентации правила, нуклеофильные и электрофильные реагенты,принцип сохранения орбитальной симметрии (см. Симметрия в химии) и т.п.

Р. х. существенно зависят как от природы реактантов, так и от внешних условий реакции. Многие Р. х. возможны только под воздействием внешних источников энергии: тепловой, электромагнитной (фотохимические реакции), электрической (электрохимические реакции). При этом сама Р. х. может служить источником энергии. Количественное экспериментальное изучение Р. х. привело к установлению ряда основных законов химии, отражающих как стехиометрию, так и энергетику реакций. К таким законам относятся постоянства состава закон, Гесса закон и др. Классификация Р. х. проводится по различным признакам и различается в зависимости от того, в какой области химии они исследуются. Термодинамическая классификация использует в качестве таких признаков: энергетику реакций (экзотермические, т. е. идущие с выделением тепла, и эндотермические, т. е. идущие с поглощением тепла); количество фаз реактантов (гомогенные и гетерогенные реакции). Различают Р. х., идущие в объёме, на поверхности раздела фаз и т.д. Кинетическая классификация выделяет следующие признаки: скорость прямой и обратной реакций (обратимые и необратимые реакции); число взаимосвязанных реакций в системе (простая реакция, т. е. только одна, практически необратимая реакция, и сложная реакция, которую можно подразделить на несколько простых); молекулярность реакции (число молекул, одновременным взаимодействием между которыми осуществляется элементарный акт химического превращения); порядок реакции по каждому реагенту и в целом (см. Кинетика химическая). Сложные Р. х. по форме связи простых реакций подразделяются на параллельные, последовательные, сопряжённые, обратимые и т.д. В отдельную группу выделяется обширный класс каталитических реакций (см. Катализ). В зависимости от того, какие частицы участвуют в элементарном акте, реакции подразделяются на молекулярные, ионные, фотохимические и т.д., а также радикальные или цепные реакции. Детальное подразделение реакций проводится и по их механизму.

В неорганической химии широко используется классификация Р. х. по типам участвующих в них соединений и по характеру их взаимодействия: реакции образования и разложения, гидролиза, нейтрализации реакции, реакции окисления-восстановления. Большую группу Р. х. составляют различные реакции комплексообразования.

Органические реакции - две группы: гетеролитические, при которых разрыв связи в молекуле происходит несимметрично и электроны остаются спаренными, и гомолитичные, в которых происходит симметричный разрыв связи, в результате чего образуются радикалы. В зависимости от типа атакующего реагента гетеролитические реакции могут быть нуклеофильными (обозначаются символом N)и электрофильными (символ Е). Основные три класса органических реакций включают замещения (обозначаются символом S с индексами N или Е), присоединения (символ А) и отщепления (элиминирования, символ Е). Каждая из этих реакций в зависимости от механизма может осуществляться как нуклеофильный, электрофильный или радикальный процесс. Особый класс реакций составляют реакции циклоприсосдинения. С учётом молекулярности лимитирующей стадии различают мономолекулярные (например, SE 1) и бимолекулярные (например, SE 2) реакции. Помимо указанных механизмов, присоединения и замещения реакции могут происходить в результате окислительно-восстановительного взаимодействия реагентов. Многие органические реакции включают ряд последовательных стадий, в том числе обратимых. Общая обратимость характерна для таких, например, реакций, как реакции металлирования и ароматического сульфирования. Возможны реакции, в которых промежуточные соединения вступают в параллельные реакции, что приводит к образованию смеси продуктов. Многочисленные превращения органических молекул включают процессы, происходящие без изменения состава, но приводящие к изменению химического строения (структуры) соединения, например различного типа изомеризации, молекулярные перегруппировки и таутомерные превращения (см. Органическая химия).

Понятие Р. х. является в известной степени условным. Так, к числу Р. х. обычно не относят образование ассоциатов в растворах, электронные возбуждения молекул (даже при существенном изменении равновесной геометрической конфигурации) и ряд др. процессов.

Закон постоянства состава и закону кратных отношений

В большинстве случаев химические соединения подчиняется закону постоянства состава и закону кратных отношений. Однако известны довольно многочисленные соединения переменного состава.

Химические соединения получают в результате химических реакций. Образование химических соединений сопровождается выделением (экзотермическая реакция) или поглощением (Эндотермическая реакция) энергии. Физические и химические свойства химических соединений отличаются от свойств веществ, из которых они получены. Химические соединения разделяются на неорганические и органические. Известно более 100 тыс. неорганических и более 3 млн органических соединений. Каждое химическое соединение, которое описано в литературе, имеет уникальный цифровой идентификатор, число CAS.

Сложные вещества:

Оксиды (~H_2O, ~CaO, ~CO_2, ~P_2O_5 и др.)
- основания (~NaOH, ~Ca(OH)_2, ~Al(OH)_3, ~Fe(OH)_3 и др.)
- кислоты (~HCl, ~HNO_3, ~H_2SO_4, ~H_3PO_4 и др.)
- соли (~NaCl, ~KNO_3, ~CuSO_4, ~Ca_3(PO_4)_2 и др.)

Простые вещества - вещества, состоящие исключительно из атомов одного химического элемента (в отличие от сложных веществ). Являются формой существования химических элементов в свободном виде], или, иначе говоря, элементы, не связанные химически ни с каким другим элементом, образуют простые вещества. Известно свыше 400 разновидностей простых веществ.

В зависимости от типа химической связи между атомами простые вещества могут быть металлами ( , , , и другие) и неметаллами (H2, N2, Br2, Si и другие).

Примеры простых веществ: молекулярные (O2, O3, H2, Cl2) и атомарные ( , ) газы; различные формы углерода, иод (I2), металлы (не в виде сплавов).

Аллотропные модификации

Один и тот же химический элемент зачастую может образовывать несколько типов простых веществ (аллотропия), называемых аллотропными модификациями. Явление аллотропии может быть обусловлено либо различным составом молекул данного элемента (аллотропия состава), либо различным строением молекул и способом размещения молекул (атомов) в кристаллах (аллотропия формы). Способность элемента к образованию соответствующих аллотропных модификаций обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов.

Различные аллотропные модификации могут переходить друг в друга. Для данного химического элемента его аллотропные модификации всегда различаются по физическим свойствам и химической активности (например, озон активнее кислорода, температура плавления алмаза больше, чем фуллерена).

Агрегатное состояние

При нормальных условиях соответствующие простые вещества для 11 элементов являются газами ( , , , , , , , , , , ), для 2 - жидкостями (Br, Hg), для остальных элементов - твёрдыми телами.

При комнатной температуре (либо близкой к ней) 5 металлов находятся в жидком либо полужидком состоянии, так как их температура плавления близка к комнатной:

Отношение понятий

Понятия атом, химический элемент и простое вещество не следует смешивать. Атом - конкретное понятие, так как атомы существуют реально. Химический элемент - это собирательное, абстрактное понятие; в природе химический элемент существует в виде свободных или химически связанных атомов, то есть простых и сложных веществ.

Также нужно различать свойства (характеристики) простого вещества (совокупности частиц) и свойства (характеристики) химического элемента (изолированного атома определенного вида)

Характеристики химического элемента

атомный номер
относительная атомная масса
изотопный состав
распространённость в природе
положение в периодической системе
строение атома
энергия ионизации
сродство к электрону
электроотрицательность
степени окисления
валентность
аллотропные модификации
химический знак
и другие

Характеристики простого вещества

окраска
запах
электропроводность
теплопроводность
растворимость
твёрдость
температура кипения
температура плавления
вязкость
молярная масса
оптические свойства
магнитные свойства
химическая формула
и другие

Названия химических элементов и соответствующих простых веществ совпадают в большинстве случаев. Однако существуют и исключения. Например, названия аллотропных модификаций кислорода - кислород (дикислород O2) и озон; углерода - алмаз, графит, карбин, фуллерен.

Каждый химический элемент имеет свое условное обозначение - химический знак (символ). В ряде случаев химический знак может также выражать состав простого вещества (Zn, B, C, Ar). Однако, например, символ O обозначает только химический элемент, простое вещество кислород имеет формулу O2.

Органические вещества

Органические вещества, органические соединения - класс соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов).

Название органические соединения появилось на ранней стадии развития химии во время господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. Вещества при этом разделялись на минеральные - принадлежащие царству минералов, и органические - принадлежащие царствам животных и растений. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером в 1828 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.

Основные классы органических соединений биологического происхождения - белки, липиды, углеводы, нуклеиновые кислоты - содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу - несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.

Соединения углерода с другими элементами составляют особый класс органических соединений - элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.

Количество известных органических соединений давно перевалило за 10 млн. Таким образом, органические соединения - самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов углерода, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной - двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода - 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.

1. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров - соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.

2. Явление гомологии - существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу (чаще всего CH2). Целый ряд физико-химических свойств в первом приближении изменяется симбатно по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами.

Номенклатура органических соединений

Органическая номенклатура - представляет систему классификации и наименований органических веществ. В настоящее время распространена номенклатура ИЮПАК.

Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями - строением углеродного скелета соединения и его функциональными группами.

В зависимости от природы углеродного скелета органические соединения можно разделить на ациклические и циклические. Среди ациклических соединений различают предельные и непредельные. Циклические соединения разделяются на карбоциклические (алициклические и ароматические) и гетероциклические.

Органические соединения

Углеводороды
+ Ациклические соединения
# Предельные углеводороды (алканы)
# Непредельные углеводороды
* Алкены
* Алкины
* Алкадиены (диеновые углеводороды)
+ Циклические углеводороды
# Карбоциклические соединения
* Алициклические соединения
* Ароматические соединения
# Гетероциклические соединения
o Другие классы органических соединений
+ Спирты, Фенолы
+ Альдегиды, Кетоны
+ Карбоновые кислоты
+ Сложные эфиры
+ Жиры
+ Углеводы
+ Амины
+ Аминокислоты
+ Белки
+ Нуклеиновые кислоты

Алифатические соединения

Алифатические соединения - органические вещества, не содержащие в структуре ароматических систем.

Углеводороды - Алканы - Алкены - Диены или Алкадиены - Алкины - Галогенуглеводороды - Спирты - Меркаптаны - Простые эфиры - Альдегиды - Кетоны - Карбоновые кислоты - Сложные эфиры - Углеводы или сахара - Нафтены - Амиды - Амины - Липиды - Нитрилы

Ароматические соединения

Ароматические соединения, или арены, - органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)

Бензол-Толуол-Ксилол-Анилин-Фенол-Ацетофенон-Бензонитрил- Галогенарены-Нафталин-Антрацен-Фенантрен-Бензпирен-Коронен-Азулен-Бифенил-Ионол.
Гетероциклические соединения

Гетероциклические соединения - вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом

Пиррол-Тиофен-Фуран-Пиридин

Полимеры

Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты меньшего размера. Эти сегменты могут быть идентичны, и тогда речь идет о гомополимере. Полимеры относятся к макромолекулам - классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид) или природными (целлюлоза, крахмал).

Структурный анализ органических веществ

В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) - наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.

Элементный анализ - деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.

Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определенных функциональных групп.

Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.

Спектроскопия ядерного магнитного резонанса ЯМР.

Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе

Аналитическая химия.

Сферы

Сферы = оболочки или окружения связанные определенной тематикой. Как правило сферы охватывают
заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли.

Биосфера
- Ноосфера
- Техносфера
- Атмосфера
- Гидросфера
- Основные законы эволюции живого вещества в биосфере
- Ноосфера
- БИОС-3
- Биосфера 2
- Среда обитания
- Биотическая регуляция окружающей среды



Загрузка...