emou.ru

В виде каких частиц химический элемент натрий. Химия

Натрий – простое вещество, расположившееся в первой группе третьего периода периодической таблицы химических элементов Д. И. Менделеева. Представляет собой очень мягкий, серебристый щелочной металл, имеющий фиолетовый оттенок, будучи разделённым на тонкие слои. Температура плавления натрия чуть ниже необходимой для закипания воды, а температура кипения – 883 градуса по Цельсию. При комнатной температуре его плотность составляет 0.968 г/см3. Из-за своей низкой плотности при необходимости, натрий возможно разрезать обычным ножом.

Натрий очень распространен на нашей планете: различные его соединения здесь можно найти как в море или земной коре, где он содержится в относительно больших количествах, так и в составе многих живых организмов, но не встречается в живой природе в чистом виде в связи со своей поразительно высокой активностью. Натрий является одним из обязательных микроэлементов, необходимых для нормальной жизнедеятельности человека – поэтому для восполнения его естественной убыли из организма необходимо употреблять около 4-5 грамм его соединения с хлором – т.е. обычной поваренной соли.

Натрий в истории

Различные соединения натрия были известны человеку ещё со времён древнего Египта. Египтяне первыми начали активно использовали натрии содержащую соду из солёного озера Натрон для различных житейских нужд. Соединения натрия упоминались даже в библии в качестве компонента моющего средства, однако впервые в чистом виде натрий был получен английским химиком Хемфри Деви в 1807 году,в ходе экспериментов с его производными веществами.

Изначально, натрий именовался sodium – производным от арабского слова, обозначающего головную боль. Слово «натрий» было позаимствовано из египетского языка и впервые, в современной истории, было использовано шведским обществом врачей как обозначение содосодержащих минеральных солей.

Химические свойства натрия

Натрий является активным щелочным металлом – т.е. он очень быстро окисляется при контакте с воздухом и его приходить хранить в керосине, при этом натрий имеет очень низкую плотность и часто всплывает на его поверхность. Являясь очень сильным восстановителем, натрий и вступает в реакции с большинством неметаллов, а будучи металлом активным, реакции с его применением зачастую проходят очень быстро и бурно. Например, если поместить в воду кусочек натрия, то он начинает активно самовоспламеняться, что в итоге приводит к взрыву. Воспламенение и выделение кислорода происходят при реакции натрия и его производных с множеством других веществ, однако с разбавленными кислотами он взаимодействует как обычный металл. С благородными газами, йодом и углеродом натрий в реакцию не вступает, и так же очень плохо реагирует с азотом , образуя при этом довольно неустойчивое вещество в виде тёмно-серых кристаллов – нитрид натрия.

Применение натрия

Основное применение натрий находит в химической промышленности и металлургии, где, чаще всего, он используется в качестве восстановителя, благодаря своим химическим свойствам. Так же его используют в качестве осушителя для таких органических растворителей как эфир и ему подобных; для производства проводов, способных выдерживать огромные напряжения. В этой же сфере натрий применяют как основной компонент в производстве натриево-серных аккумуляторов, имеющих высокую удельную энергию, т.е. меньший расход топлива. Главный недостаток этого типа аккумуляторов – это высокая рабочая температура, а, следовательно – риск воспламенения и взрыва натрия при аварии.

Ещё одна сфера применения натрия – это фармакология, где множество производных натрия используются в качестве реактивов, полупродуктов и вспомогательных веществ при создании различных сложных лекарств, а так же антисептиков. Раствор хлорида натрия относительно сходен плазме крови человека и быстро выводится из организма, поэтому его используют при необходимости поддержания и нормализации давления крови.

На сегодняшний день некоторые соединения натрия – это обязательный компонент при производстве бетона и других строительных материалов. Благодаря использованию материалов, содержащих производные от натрия компоненты их можно использовать при строительных работах во время низких температур.

Из-за своей распространенности и простоты промышленного производства, натрий имеет довольно малую стоимость. Сегодня его производят так же как и при его первом получении — подвергая различные натриесодержащие породы воздействию сильного электрического тока. Благодаря этому, а так же своей необходимости во многих видах промышленности, объемы его производства только растут.

Название «натрий» происходит от латинского слова natrium (ср. др.-греч. νίτρον ), которое было заимствовано из среднеегипетского языка (nṯr ), где оно означало среди прочего: «сода», «едкий натр» .

Аббревиатура «Na» и слово natrium были впервые использованы академиком, основателем шведского общества врачей Йенсом Якобсом Берцелиусом (Jöns Jakob Berzelius, 1779-1848) для обозначения природных минеральных солей, в состав которых входила сода . Ранее (а также до сих пор в английском, французском и ряде других языков) элемент именовался содий (лат. sodium ) - это название sodium , возможно, восходит к арабскому слову suda , означающему «головная боль», так как сода применялась в то время в качестве лекарства от головной боли .

Натрий впервые был получен английским химиком Хемфри Дэви , который сообщил об этом 19 ноября 1807 года в Бэкеровской лекции (в рукописи лекции Дэви указал, что он открыл калий 6 октября 1807 года, а натрий - через несколько дней после калия ), электролизом расплава гидроксида натрия .

Нахождение в природе

N a 2 C O 3 + 2 C → 1000 o C 2 N a + 3 C O . {\displaystyle {\mathsf {Na_{2}CO_{3}+2C\ {\xrightarrow {1000^{o}C}}\ 2Na+3CO.}}}

Вместо угля могут быть использованы карбид кальция , алюминий , кремний , ферросилиций , силикоалюминий .

С появлением электроэнергетики более практичным стал другой способ получения натрия - электролиз расплава едкого натра или хлорида натрия . В настоящее время электролиз - основной способ получения натрия.

Натрий также можно получить цирконийтермическим методом или термическим разложением азида натрия .

Физические свойства

Натрий - серебристо-белый металл , в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см³ (при 19,7 °C ), температура плавления 97,86 °C , температура кипения 883,15 °C .

Под давлением становится прозрачным и красным, как рубин .

При комнатной температуре натрий образует кристаллы в кубической сингонии , пространственная группа I m 3m , параметры ячейки a = 0,42820 нм , Z = 2 .

При температуре −268 °С (5 К) натрий переходит в гексагональную фазу , пространственная группа P 6 3 /mmc , параметры ячейки a = 0,3767 нм , c = 0,6154 нм , Z = 2 .

Химические свойства

Щелочной металл на воздухе легко окисляется до оксида натрия . Для защиты от кислорода воздуха металлический натрий хранят под слоем керосина .

4 N a + O 2 → 2 N a 2 O {\displaystyle {\mathsf {4Na+O_{2}\ {\xrightarrow {\ }}\ 2Na_{2}O}}}

При горении на воздухе или в кислороде образуется пероксид натрия :

2 N a + O 2 → N a 2 O 2 {\displaystyle {\mathsf {2Na+O_{2}\ {\xrightarrow {\ }}\ Na_{2}O_{2}}}}

С водой натрий реагирует очень бурно, помещённый в воду кусочек натрия всплывает, из-за выделяющегося тепла плавится, превращаясь в белый шарик, который быстро движется в разных направлениях по поверхности воды , реакция идёт с выделением водорода , который может воспламениться. Уравнение реакции:

2 N a + 2 H 2 O → 2 N a O H + H 2 {\displaystyle {\mathsf {2Na+2H_{2}O\ {\xrightarrow {\ }}\ 2NaOH+H_{2}\uparrow }}}

Как и все щелочные металлы, натрий является сильным восстановителем и энергично взаимодействуют со многими неметаллами (за исключением азота , иода , углерода , благородных газов):

2 N a + C l 2 → 2 N a C l {\textstyle {\mathsf {2Na+Cl_{2}\ {\xrightarrow {\ }}\ 2NaCl}}} 2 N a + H 2 → 250 − 400 o C , p 2 N a H {\displaystyle {\mathsf {2Na+H_{2}\ {\xrightarrow {250-400^{o}C,p}}\ 2NaH}}}

Натрий также используется в газоразрядных лампах высокого и низкого давления (НЛВД и НЛНД). Лампы НЛВД типа ДНаТ (Дуговая Натриевая Трубчатая) очень широко применяются в уличном освещении. Они дают ярко-жёлтый свет. Срок службы ламп ДНаТ составляет 12-24 тысяч часов. Поэтому газоразрядные лампы типа ДНаТ незаменимы для городского, архитектурного и промышленного освещения. Также существуют лампы ДНаС, ДНаМТ (Дуговая Натриевая Матовая), ДНаЗ (Дуговая Натриевая Зеркальная) и ДНаТБР (Дуговая Натриевая Трубчатая Без Ртути).

Металлический натрий применяется в качественном анализе органического вещества. Сплав натрия и исследуемого вещества нейтрализуют этанолом , добавляют несколько миллилитров дистиллированной воды и делят на 3 части, проба Ж. Лассеня (1843), направлена на определение азота, серы и галогенов (проба Бейльштейна).

Хлорид натрия (поваренная соль) - древнейшее применяемое вкусовое и консервирующее средство.

Азид натрия (NaN 3) применяется в качестве азотирующего средства в металлургии и при получении

1. Общие сведения и основные эколого-физиологические данные Натрий (от лат.Natrium) – это блестящий, серебристый металл, быстро тускнеющий на воздухе. Устойчив к коррозии благодаря образованию защитной оксидной плёнки. Бурно реагирует с водой и концентрированными кислотами. В силу своей большой химической активности в природе встречается в виде химических соединений.

Характеристика

Данные

Атомный номер

Атомная масса

Основные эколого-физиологические данные

Суточное поступление с продуктами питания

Резорбция

Период полувыведения из организма

костная ткань:

6970-1400 мг/кг сырого веса

2000 мг/кг сырого веса

564-1735 мг/кг сырого веса

730-1770 мг/кг сырого веса

цельная кровь:

1969 мг/кг сырого веса

зубы (дентин):

3900-11600 мг/кг

18-1720 мг/кг

Токсическая доза для человека:

нетоксичен

2. Применение в медицине. В медицине хлористый натрий применяют в виде изотонического 0,9% раствора при обезвоживании организма и как дезинтоксикационное средство, а также для промывания ран, глаз, слизистой оболочки носа, для поднятия осмотического давления крови, в виде гипертонического 3-5% раствора в хирургии – для очищения ран и при чрезмерно развившихся грануляциях (молодая, богатая новообразованными сосудами и клеточными элементами соединительная ткань, заполняющая заживляющие раны, когда её края еще неплотно прилегают друг к другу; является нормальным этапом процесса заживления ран), перед операциями пересадки кожи. Гипертонический 10% раствор применяют внутривенно при лёгочных, желудочных, кишечных кровотечениях, а также для усиления диуреза (осмотический диурез – выделение большого объема мочи в результате повышенной экскреции осмотически активных веществ) и в качестве полосканий при заболеваниях горла. В послеоперационном периоде 2-5% раствор назначают в микроклизмах при атонии кишечника, а также для промывания желудка при отравлении нитратом серебра. 3. Физиологическая роль. В организм человека натрий поступает ежедневно в виде NaCl в достаточно больших количествах: 12-15г (4-6г «чистого» натрия), который содержится во многих пищевых продуктах: колбаса, сало, икра, соленая рыба, сыр, маслины, кукурузные хлопья.

Ионы натрия быстро и полностью всасываются на всех участках желудочно-кишечного тракта и в местах парентеральных инъекций. Ионы также легко проникают через кожу и легочный эпителий. Натрий в виде катиона Na+ участвует в поддержании гомеостаза (ионное равновесие, осмотическое давление в жидкостях). Натрий распространяется по всему организму: крови, мышцам, костям, внутренним органам, коже. Около 40% натрия находится в костной ткани (принимает участие в минеральном обмене), в основном, во внеклеточной жидкости. Содержание натрия в теле здорового человека составляет 0,08%(55-60 г на 70кг массы тела), а суточное потребление 4-7г. Выводится натрий из организма, в основном, с мочой (95%),калом, потом. Максимальная экскреция натрия с мочой отмечается с 9-12 часов дня, тогда как минимальная - в ночные часы.

Натрий играет весьма важную роль в регуляции осмотического давления и водного обмена, при нарушении которых отмечаются следующие признаки: жажда (именно поэтому в жаркую погоду необходимо принимать подсоленную воду), сухость слизистых оболочек, отечность кожи. Натрий оказывает значительное влияние и на белковый обмен. Обмен натрия находится под контролем щитовидной железы. При гипофункции щитовидной железы происходит задержка натрия в тканях. При гиперфункции количества натрия в коже уменьшается, а выделение его из организма усиливается.

Обмен натрия регулируется альдостероном (гормон коры надпочечников группы минералокортикоидов). Он увеличивает реабсорбцию (обратное всасывание воды и растворенных веществ)натрия и хлора в канальцах почки, что ведет к повышению содержания поваренной соли в крови, лимфе и тканевой жидкости. Одновременно он снижает реабсорбцию калия в канальцах почки, что усиливает потерю калия и уменьшает его содержание в организме. Увеличение под влиянием альдостерона концентрации поваренной соли в крови и тканевой жидкости повышает их осмотическое давление, что приводит к задержке воды в организме и способствует повышению артериального давления. Усиленная реабсорбция может привести и к развитию алкалоза (понижению pН крови по сравнению с нормальным уровнем (≤7,37). Недостаток альдостерона вызывает противоположные сдвиги. Реабсорбция натрия в канальцах почки уменьшается и в результате организм теряет столь большое количество натрия, что это ведёт к изменениям внутренней среды, несовместимым с жизнью, и через несколько дней после удаления коры надпочечников наступает смерть. Только введением больших количеств натрия или непосредственно минералокортикоидов можно поддержать жизнь животного с удаленными надпочечниками. Поэтому минералокортикоиды называют «гормонами, сохраняющими жизнь», а именно содержание натрия в организме. Поэтому при повышении количества натрия в организме (при введении в организм), тормозит секрецию альдостерона, что усиливает выделение натрия с мочой. Недостаток натрия в организме, напротив, вызывает повышение альдостерона и как следствие этого увеличение реабсорбции натрия в почечных канальцах. Альдостерон также уменьшает выделение натрия при сильном потоотделении: таким путем он может предотвратить потерю натрия при сильном потоотделении во время перегревания. Минералокортикоиды, регулирующие содержание натрия в организме, способствуя его задержке в тканях и удержанию воды, усиливают явление отека тканей, возникающие при воспалении, а также и некоторые другие проявления воспалительных реакций. Минералокортикоиды - провоспалительные гормоны. В организме натрий выполняет «внеклеточные» функции, среди которых: Поддержание осмотического давления и ph среды

Формирование потенциала действия путём обмена с ионами калия

Транспорт углекислого газа

Гидратация белков

Солюбилизация (самопроизвольное проникновение низкомолекулярного вещества, слабо растворимого в данной среде) органических кислот.

Внутри клеток натрий необходим для поддержания нейромышечной возбудимости и работы натрий-калиевого насоса, обеспечивающих регуляцию клеточного обмена различных метаболитов. От натрия зависит транспорт аминокислот, сахаров, различных неорганических и органических анионов через мембраны клеток.

Пониженное содержание натрия в организме.

При выключении хлористого натрия из пищи его выделение из организма прекращается на 9-й день. Недостаток хлористого натрия вызывает тяжелые расстройства, проявляющиеся исхуданием, слабостью, кожными сыпями, выпадением волос, поносами, судорогами. У рабочих горячих цехов при усиленном выделении хлористого натрия потовыми железами наблюдаются кишечные колики, судорожные сокращения скелетных мышц, угнетение ЦНС и расстройства кровообращения. Пониженное содержание натрия обычно встречается при нейроэндокринных нарушениях, хронических заболеваниях почек и кишечника или как следствие черепно-мозговых травм.

Основные причины дефицита натрия.

недостаточное поступление;

болезни гипофиза, надпочечников;

болезни почек;

черепно-мозговые травмы;

усиленное выделение натрия (повышенная потливость, понос, рвота);

обильная экссудация при сильных ожогах;

длительное применение мочегонных препаратов, кортикостероидов, препаратов лития;

избыток в организме калия, кальция;

длительный контакт с морской водой;

нарушение регуляции обмена натрия.

Основные проявления дефицита натрия.

исхудание, слабость,

кожные сыпи, выпадение волос,

поносы, кишечные колики,

судорожные сокращения скелетных мышц,

расстройства кровообращения,

угнетение центральной нервной системы.

Повышенное содержание натрия в организме.

Отравления соединениями натрия встречаются не часто и обычно носят случайный характер. Как правило, токсичность солей натрия определяется токсичностью их анионов, таких как арсенит, хромат, фторид. Токсичность поваренной соли для человека, установленная по минимальной летальной дозе, составляет 8,2 г/кг веса при пероральном введении. Механизм токсического действия хлорида натрия в местах введения обусловлен в первую очередь высоким осмотическим давлением. В результате имеет место интенсивное поступление воды из окружающих тканей, приводящее к их обезвоживанию и нарушению функций клеток. Избыточное поступление ионов Na + вызывает перегрузку соответствующих систем гомеостаза и нарушение метаболических процессов. В эпителии желудочно-кишечного тракта и почечных канальцев развивается воспаление, нередко приводящее к некрозу ткани.

Постоянный избыток натрия и калия в пище сопровождается некоторым повышением уровня инсулина в крови. Отмечаются и другие гормональные сдвиги. Введение большого количества хлористого натрия вызывает распад белка и сильное исхудание. При парентеральном введении изотонического раствора может повыситься температура тела, что чаще всего наблюдается у детей.

Люди с избытком натрия обычно легко возбудимы, впечатлительны, гиперактивны, у них появляются жажда и потливость, увеличивается частота мочеиспусканий.

Основные причины избытка натрия.

нарушение регуляции обмена натрия;

избыточное поступление извне;

недостаточное содержание воды в организме.

Основные проявления избытка натрия.

утомление, возбуждение;

дисфункция надпочечников;

нарушение выделительной функции почек;

образование камней в почках;

гипертензия;

Часть 4. Натрий-калиевый насос Попытки выяснить связь обмена веществ с движением ионов через мембрану привели к открытию так называемого натрий-калиевого насоса. Проведение серии импульсов по нервному волокну сопровождается обогащением протоплазмы ионами натрия и потерей ионов калия. Для гигантского аксона кальмара подсчитано, что во время одиночного нервного импульса через каждый квадратный микрон мембраны внутрь протоплазмы поступает около 20000 ионов натрия и столько же ионов калия покидает волокно. В итоге при каждом импульсе аксон диаметром 0,5 мм теряет около одной миллионной общего содержания калия. Хотя эти потери очень незначительны, но при ритмическом следовании импульсов они, суммируясь, должны были бы привести к более или менее заметным изменения концентрационных градиентов. В конечном итоге разности концентраций ионов между наружной средой и протоплазмой должны были бы выровняться, если бы в мембране не существовал механизм, обеспечивающий активное выведение («выкачивание») из протоплазмы ионов натрия и «нагнетение» в неё ионов калия. Такой механизм получил название натрий-калиевого насоса. Деятельность его связана с затратой энергии обмена веществ. Действительно, для того, чтобы выводить ионы натрия из протоплазмы в наружный раствор, где их концентрация превышает внутриклеточную, необходимо совершить определенную работу. В покое эта работа невелика, так как натриевая проницаемость покоящейся мембраны имеет очень низкие величины. При возбуждении же усиленное поступление ионов натрия внутрь протоплазмы активирует работу насоса, что обеспечивает восстановление нарушенных концентрационных градиентов. Следует, однако, подчеркнуть, что этот восстановительный процесс протекает очень медленно – в течение многих минут и даже часов. Упрощенно действие натрий-калиевого насоса можно предста­вить следующим образом.

1. С внутренней стороны мембраны к молекуле белка-переносчика поступают АТФ и ионы натрия, а с наружной - ионы калия.

2. Молекула переносчика осуществляет гидролиз одной молеку­лы АТФ.

3. При участии трех ионов натрия за счет энергии АТФ к перено­счику присоединяется остаток фосфорной кислоты (фосфорилирование переносчика); сами эти три иона натрия также присое­диняются к переносчику.

4. В результате присоединения остатка фосфорной кислоты про­исходит такое изменение формы молекулы переносчика (конформация), что ионы натрия оказываются по другую сторону мембраны, уже вне клетки.

5. Три иона натрия выделяются во внешнюю среду, а вместо них с фосфорилированным переносчиком соединяются два иона калия.

6. Присоединение двух ионов калия вызывает дефосфорилирование переносчика - отдачу им остатка фосфорной кислоты.

7. Дефосфорилирование, в свою очередь, вызывает такую конформацию переносчика, что ионы калия оказываются по дру­гую сторону мембраны, внутри клетки.

8. Ионы калия высвобождаются внутри клетки, и весь процесс повторяется.

Значение натрий-калиевого насоса для жизни каждой клетки и организма в целом определяется тем, что непрерывное откачи­вание из клетки натрия и нагнетание в нее калия необходимо для осуществления многих жизненно важных процессов: осморегуляции и сохранения клеточного объема, поддержания раз­ности потенциалов по обе стороны мембраны, поддержания эле­ктрической активности в нервных и мышечных клетках, для активного транспорта через мембраны других веществ (сахаров, аминокислот). Большие количества калия требуются также для белкового синтеза, гликолиза, фотосинтеза и других процессов. Примерно треть всей АТФ, расходуемой животной клеткой в со­стоянии покоя, затрачивается именно на поддержание работы натрий-калиевого насоса. Если каким-либо внешним воздейст­вием подавить дыхание клетки, т. е. прекратить поступление кислорода и выработку АТФ, то ионный состав внутреннего со­держимого клетки начнет постепенно меняться. В конце концов он придет в равновесие с ионным составом среды, окружающей клетку; в этом случае наступает смерть.

1. Основные понятия, определения и законы химии

1.2. Атом. Химический элемент. Простое вещество

Атом - центральное понятие в химии. Все вещества состоят из атомов. Атом - предел дробления вещества химическими способами, т.е. атом - наименьшая химически неделимая частица вещества. Деление атома возможно только в физических процессах - ядерные реакции и радиоактивные превращения.

Современное определение атома: атом - мельчайшая химически неделимая электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.

В природе атомы существуют как в свободном (индивидуальном, изолированном) виде (например, из отдельных атомов состоят благородные газы), так и в составе различных простых и сложных веществ. Понятно, что в составе сложных веществ атомы не являются электронейтральными, а имеют избыточный положительный или отрицательный заряд (например, Na + Cl − , Ca 2+ O 2−), т.е. в сложных веществах атомы могут находиться в виде одноатомных ионов. Атомы и образующиеся из них одноатомные ионы называются атомными частицами .

Общее число атомов в природе не поддается подсчету, однако их можно классифицировать на более узкие виды, так же, как, например, все деревья в лесу по характерным признакам делят на березы, дубы, ели, сосны и т.д. За основу классификации атомов по определенным видам взят заряд ядра, т.е. число протонов в ядре атома, так как именно эта характеристика сохраняется, независимо от того, находится атом в свободном или в химически связанном виде.

Химический элемент - это вид атомных частиц с одинаковым зарядом ядра.

Например, имеется в виду химический элемент натрий независимо от того, рассматриваются ли свободные атомы натрия или ионы Na + в составе солей.

Не следует смешивать понятия атом , химический элемент и простое вещество . Атом - понятие конкретное, атомы существуют реально, а химический элемент - понятие абстрактное, собирательное. Например, в природе существуют конкретные атомы меди с округленными относительными атомными массами 63 и 65. А вот химический элемент медь характеризуется усредненной относительной атомной массой, приведенной в периодической таблице химических элементов Д.И. Менделеева, которая с учетом содержания изотопов равна 63,54 (в природе атомы меди с таким значением A r отсутствуют). Под атомом в химии традиционно понимается электронейтральная частица, тогда как химический элемент в природе может быть представлен как электронейтральными, так и заряженными частицами - одноатомными ионами: , , , .

Простое вещество - одна из форм существования химического элемента в природе (другая форма - химический элемент в составе сложных веществ). Например, химический элемент кислород в природе существует в виде простого вещества O 2 и в составе ряда сложных веществ (H 2 O, Na 2 SO 4  ⋅ 10H 2 O, Fe 3 O 4). Нередко один и тот же химический элемент образует несколько простых веществ. В этом случае говорят об аллотропии - явлении существования элемента в природе в виде нескольких простых веществ. Сами простые вещества называются аллотропными модификациями (видоизменениями ) . Ряд аллотропных модификаций известен для углерода (алмаз, графит, карбин, фуллерен, графен, тубулены), фосфора (белый, красный и черный фосфор), кислорода (кислород и озон). Из-за явления аллотропии простых веществ известно примерно в 5 раз больше, чем химических элементов.

Причины аллотропии:

  • различия в количественном составе молекул (О 2 и О 3);
  • различия в строении кристаллической решетки (алмаз и графит).

Аллотропные модификации данного элемента всегда различаются по физическим свойствам и химической активности. Например, озон активнее кислорода, а температура плавления алмаза выше, чем фуллерена. Аллотропные модификации при определенных условиях (изменение давления, температуры) могут переходить друг в друга.

В большинстве случаев названия химического элемента и простого вещества совпадают (медь, кислород, железо, азот и т.д.), поэтому нужно различать свойства (характеристики) простого вещества как совокупности частиц и свойства химического элемента как вида атомов с одинаковым зарядом ядра.

Простое вещество характеризуется строением (молекулярное или немолекулярное), плотностью, определенным агрегатным состоянием в данных условиях, окраской и запахом, электро- и теплопроводностью, растворимостью, твердостью, температурами кипения и плавления (t кип и t пл), вязкостью, оптическими и магнитными свойствами, молярной (относительной молекулярной) массой, химической формулой, химическими свойствами, способами получения и применением. Можно сказать, что свойства вещества - это свойства совокупности химически связанных частиц, т.е. физического тела, поскольку один атом или молекула не имеют вкуса, запаха, растворимости, температур плавления и кипения, окраски, электро- и теплопроводности.

Свойства (характеристики ) химического элемента : атомный номер, химический знак, относительная атомная масса, масса атома, изотопный состав, распространенность в природе, положение в периодической системе, строение атома, энергия ионизации, сродство к электрону, электроотрицательность, степени окисления, валентность, явление аллотропии, массовая и мольная доля в составе сложного вещества, спектры поглощения и испускания. Можно сказать, что свойства химического элемента - это свойства одной частицы или изолированных частиц.

Различия между понятиями «химический элемент» и «простое вещество» показаны в табл. 1.2 на примере азота.

Таблица 1.2

Различия между понятиями «химический элемент» и «простое вещество» для азота

Азот - химический элемент Азот - простое вещество
1. Атомный номер 7. 1. Газ (н.у.) без цвета, запаха и вкуса, не токсичен.
2. Химический знак N. 2. Азот имеет молекулярное строение, формула N 2 , молекула состоит из двух атомов.
3. Относительная атомная масса 14. 3. Молярная масса 28 г/моль.
4. В природе представлен нуклидами 14 N и 15 N. 4. Плохо растворим в воде.
5. Массовая доля в земной коре 0,030 % (16-е место по распространенности). 5. Плотность (н.у.) 1,25 г/дм 3 , немного легче воздуха, относительная плотность по гелию 7.
6. Не имеет аллотропных модификаций. 6. Диэлектрик, плохо проводит теплоту.
7. Входит в состав различных солей - нитратов (KNO 3 , NaNO 3 , Ca(NO 3) 2). 7. t кип = −195,8 °С; t пл = −210,0 °С.
8. Массовая доля в аммиаке 82,35 %, входит в состав белков, аминов, ДНК. 8. Диэлектрическая проницаемость 1,00.
9. Масса атома равна (для 14 N) 14u или 2,324 · 10 −23 г. 9. Дипольный момент равен 0.
10. Строение атома: 7p ,7e ,7n (для 14 N), электронная конфигурация 1s 2 2s 2 2p 3 , два электронных слоя, пять валентных электронов и др. 10. Имеет молекулярную кристаллическую решетку (в твердом состоянии).
11. В периодической системе находится во 2-м периоде и VA-группе, относится к семейству p -элементов. 11. В атмосфере объемная доля 78 %.
12. Энергия ионизации 1402,3 кДж/моль, сродство к электрону −20 кДж/моль, электроотрицательность 3,07. 12. Мировое производство 44 · 10 6 т в год.
13. Проявляет ковалентности I, II, III, IV и степени окисления −3, −2, −1, 0, +1, +2, +3, +4, +5. 13. Получают: в лаборатории - нагреванием NH 4 NO 2 ; в промышленности - нагреванием сжиженного воздуха.
14. Радиус атома (орбитальный) 0,052 нм. 14. Химически малоактивен, при нагревании взаимодействует с кислородом, металлами.
15. Основная линия в спектре 399,5 нм. 15. Используется для создания инертной атмосферы при сушке взрывчатых веществ, при хранении ценных произведений живописи и рукописей, для создания низких температур (жидкий азот).
16. В организме среднего человека (масса тела 70,0 кг) содержится 1,8 кг азота.
17. В составе аммиака участвует в образовании водородной связи.

Пример 1.2. Укажите, в каких из приведенных утверждений кислород упоминается как химический элемент:

  • а) масса атома равна 16u;
  • б) образует две аллотропные модификации;
  • в) молярная масса равна 32 г/моль;
  • г) плохо растворим в воде.

Решение. Утверждения в), г) относятся к простому веществу, а утверждения а), б) - к химическому элементу кислороду.

Ответ : 3).

Каждый химический элемент имеет свое условное обозначение - химический знак ( символ ) : K, Na, O, N, Cu и т.д.

Химический знак может также выражать состав простого вещества. Например, символ химического элемента Fe отражает также состав простого вещества железо. Однако химические знаки O, H, N, Cl обозначают только химические элементы; простые вещества имеют формулы O 2 , H 2 , N 2 , Cl 2 .

Как уже отмечалось, в большинстве случаев названия химических элементов и простых веществ совпадают. Исключения составляют названия аллотропных модификаций углерода (алмаз, графит, карбин, фуллерен) и одной из модификаций кислорода (кислород и озон). Например, когда мы употребляем слово «графит», то имеем в виду только простое вещество (но не химический элемент) углерод.

Распространенность химических элементов в природе выражается в массовых и мольных долях. Массовая доля w - отношение массы атомов данного элемента к общей массе атомов всех элементов. Мольная доля χ - отношение числа атомов данного элемента к общему числу атомов всех элементов.

В земной коре (слой толщиной около 16 км) наибольшую массовую (49,13 %) и мольную (55 %) доли имеют атомы кислорода, на втором месте - атомы кремния (w (Si) = 26 %, χ(Si) = 16,35 %). В Галактике почти 92 % от общего числа атомов составляют атомы водорода, а 7,9 % - атомы гелия. Массовые доли атомов основных элементов в организме человека: O - 65 %, C - 18 %, H - 10 %, N - 3 %, Ca - 1,5 %, P - 1,2 %.

Абсолютные значения масс атомов чрезвычайно малы (например, масса атома кислорода порядка 2,7 ⋅ 10 −23 г) и неудобны для проведения расчетов. По этой причине была разработана шкала относительных атомных масс элементов. В настоящее время за единицу измерения относительных атомных масс принята 1/12 часть массы атома нуклида С-12. Данная величина называется постоянной атомной массы или атомной единицей массы (а.е.м.) и имеет международное обозначение u:

m u = 1 а. е. м. = 1 u = 1 / 12 (m a 12 C) =

1,66 ⋅ 10 − 24 г = 1,66 ⋅ 10 − 27 кг.

Нетрудно показать, что численное значение u равно 1/N A:

1 u = 1 12 m a (12 C) = 1 12 M (C) N A = 1 12 12 N A = 1 N A =

1 6,02 ⋅ 10 23 = 1,66 ⋅ 10 − 24 (г).

Относительная атомная масса элемента A r (Э) - это физическая безразмерная величина, которая показывает, во сколько раз масса атома или средняя масса атома (соответственно для изотопно-чистых и изотопно-смешанных элементов) больше 1/12 части массы атома нуклида С-12:

A r (Э) = m a (Э) 1 а. е. м. = m a (Э) 1 u . (1.1)

Зная относительную атомную массу, можно легко рассчитать массу атома:

m a (Э) = A r (Э)u = A r (Э) ⋅ 1,66 ⋅ 10 −24 (г) =

A r (Э) ⋅ 1,66 ⋅ 10 −27 (кг).

Молекула. Ион. Вещества молекулярного и немолекулярного строения. Химическое уравнение

При взаимодействии атомов образуются более сложные частицы - молекулы.

Молекула - наименьшая электронейтральная обособленная совокупность атомов, способная к самостоятельному существованию и являющаяся носителем химических свойств вещества.

Молекулы имеют тот же качественный и количественный состав, что и образованное ими вещество. Химическая связь между атомами в молекуле гораздо прочнее, чем силы взаимодействия между молекулами (именно поэтому молекулу и можно рассматривать как обособленную, изолированную частицу). В химических реакциях молекулы, в отличие от атомов, не сохраняются (разрушаются). Подобно атому, отдельная молекула не обладает такими физическими свойствами вещества, как окраска и запах, температуры плавления и кипения, растворимость, тепло- и электропроводность и др.

Подчеркнем, что молекула является именно носителем химических свойств вещества; нельзя говорить, что молекула сохраняет (имеет точно такие же) химические свойства вещества, поскольку на химические свойства вещества существенное влияние оказывает межмолекулярное взаимодействие, которое для отдельной молекулы отсутствует. Например, способностью взрываться обладает вещество тринитроглицерин, но не отдельная молекула тринитроглицерина.

Ион - атом или группа атомов, имеющие положительный или отрицательный заряд.

Положительно заряженные ионы называются катионами , а отрицательно заряженные - анионами . Ионы бывают простые , т.е. одноатомные (K + , Cl −), и сложные (NH 4 + , NO 3 −), одно - (Na + , Cl −) и многозарядные (Fe 3+ , PO 4 3 −).

1. Для данного элемента простой ион и нейтральный атом имеют одинаковое число протонов и нейтронов, но различаются числом электронов: у катиона их меньше, а у аниона больше, чем у электронейтрального атома.

2. Масса простого или сложного иона такая же, как и масса соответствующей электронейтральной частицы.

Следует иметь в виду, что далеко не все вещества состоят из молекул.

Вещества, состоящие из молекул, называют веществами молекулярного строения . Это могут быть как простые (аргон, кислород, фуллерен), так и сложные (вода, метан, аммиак, бензол) вещества.

Молекулярное строение имеют все газы и практически все жидкости (исключение - ртуть); твердые вещества могут иметь как молекулярное (сахароза, фруктоза, иод, белый фосфор, фосфорная кислота), так и немолекулярное строение (алмаз, черный и красный фосфор, карборунд SiC, поваренная соль NaCl). В веществах молекулярного строения связи между молекулами (межмолекулярное взаимодействие) слабые. При нагревании они легко разрушаются. Именно по этой причине вещества молекулярного строения имеют сравнительно низкие температуры плавления и кипения, летучи (вследствие этого часто имеют запах).

Вещества немолекулярного строения состоят из электронейтральных атомов либо простых или сложных ионов. Из электронейтральных атомов состоят, например, алмаз, графит, черный фосфор, кремний, бор, а из простых и сложных ионов - соли, например KF и NH 4 NO 3 . Из положительно заряженных атомов (катионов) состоят металлы. Немолекулярное строение имеют также карборунд SiC, оксид кремния(IV) SiO 2 , щелочи (KOH, NaOH), большинство солей (KCl, CaCO 3), бинарные соединения металлов с неметаллами (основные и амфотерные оксиды, гидриды, карбиды, силициды, нитриды, фосфиды), интерметаллиды (соединения металлов друг с другом). В веществах немолекулярного строения отдельные атомы или ионы связаны между собой прочными химическими связями, поэтому при обычных условиях эти вещества твердые, нелетучи, имеют высокие температуры плавления.

Например, сахароза (молекулярное строение) плавится при 185 °С, а хлорид натрия (немолекулярное строение) - при 801 °С.

В газовой фазе все вещества состоят из молекул, и даже те, которые при обычной температуре имеют немолекулярное строение. Например, при высокой температуре в газовой фазе обнаружены молекулы NaCl, K 2 , SiO 2 .

Для веществ, разлагающихся при нагревании (CaCO 3 , KNO 3 , NaHCO 3), получить молекулы нагреванием вещества нельзя

Молекулярные вещества составляют основу органического мира, а немолекулярные - неорганического (минерального) мира.

Химическая формула. Формульная единица. Химическое уравнение

Состав любого вещества выражается с помощью химической формулы. Химическая формула - это изображение качественного и количественного состава вещества с помощью символов химических элементов, а также числовых, буквенных и других знаков.

Для простых веществ немолекулярного строения химическая формула совпадает со знаком химического элемента (например, Cu, Al, B, Р). В формуле простого вещества молекулярного строения указывают (если необходимо) число атомов в молекуле: O 3 , P 4 , S 8 , C 60 , C 70 , C 80 и т.д. Формулы благородных газов всегда записывают с одним атомом: He, Ne, Ar, Xe, Kr, Rn. При записи уравнений химических реакций химические формулы некоторых многоатомных молекул простых веществ можно (если специально не оговорено) записывать в виде символов элементов (одиночных атомов): P 4 → P, S 8 → S, C 60 → C (нельзя это делать для озона О 3 , кислорода О 2 , азота N 2 , галогенов, водорода).

Для сложных веществ молекулярного строения различают эмпирическую (простейшую) и молекулярную (истинную) формулы. Эмпирическая формула показывает наименьшее целочисленное соотношение чисел атомов в молекуле, а молекулярная формула - истинное целочисленное соотношение атомов. Например, истинная формула этана С 2 H 6 , а простейшая - CН 3 . Простейшую формулу получают делением (сокращением) чисел атомов элементов в истинной формуле на какое-либо подходящее число. Например, простейшую формулу этана получили делением чисел атомов С и Н на 2.

Простейшая и истинная формулы могут как совпадать (метан CH 4 , аммиак NH 3 , вода H 2 O), так и не совпадать (оксид фосфора(V) Р 4 О 10 , бензол C 6 H 6 , пероксид водорода Н 2 О 2 , глюкоза C 6 H 12 O 6).

Химические формулы позволяют рассчитывать массовые доли атомов элементов в веществе.

Массовая доля w атомов элемента Э в веществе определяется по формуле

w (Э) = A r (Э) ⋅ N (Э) M r (В) , (1.2)

где N (Э) - число атомов элемента в формуле вещества; M r (В) - относительная молекулярная (формульная) масса вещества.

Например, для серной кислоты M r (H 2 SO 4) = 98, тогда массовая доля атомов кислорода в этой кислоте

w (O) = A r (O) ⋅ N (O) M r (H 2 SO 4) = 16 ⋅ 4 98 ≈ 0,653 (65,3 %) .

По формуле (1.2) находят число атомов элемента в молекуле или формульной единице:

N (Э) = M r (В) ⋅ w (Э) A r (Э) (1.3)

или молярную (относительную молекулярную или формульную) массу вещества:

M r (В) = A r (Э) ⋅ N (Э) w (Э) . (1.4)

В формулах 1.2–1.4 значения w (Э) даны в долях единицы.

Пример 1.3. В некотором веществе массовая доля атомов серы составляет 36,78 %, а число атомов серы в одной формульной единице равно двум. Укажите молярную массу (г/моль) вещества:

Решение . Используя формулу 1.4, находим

M r = A r (S) ⋅ N (S) w (S) = 32 ⋅ 2 0,3678 = 174 ,

M = 174 г/моль.

Ответ : 2).

В следующем примере показан способ нахождения простейшей формулы вещества по массовым долям элементов.

Пример 1.4. В некотором оксиде хлора массовая доля атомов хлора равна 38,8 %. Найдите формулу оксида.

Решение . Так как w (Cl) + w (O) = 100 %, то

w (O) = 100 % − 38,8 % = 61,2 %.

Если масса вещества равна 100 г, то m (Cl) = 38,8 г и m (O) = = 61,2 г.

Представим формулу оксида как Cl x O y . Имеем

x   :   y = n (Cl)   :   n (O) = m (Cl) M (Cl) : m (O) M (O) ;

x   :   y = 38,8 35,5   :   61,2 16 = 1,093   :   3,825 .

Разделив полученные числа на наименьшее из них (1,093), найдем, что x : y = 1: 3,5 или, домножив на 2, получаем x : y = 2: 7. Следовательно, формула оксида Cl 2 O 7 .

Ответ : Cl 2 O 7 .

Для всех сложных веществ немолекулярного строения химические формулы являются эмпирическими и отражают состав не молекул, а так называемых формульных единиц.

Формульная единица (ФЕ) - группа атомов, соответствующая простейшей формуле вещества немолекулярного строения.

Таким образом, химические формулы веществ немолекулярного строения - это формульные единицы. Примеры формульных единиц: KOH, NaCl, CaCO 3 , Fe 3 C, SiO 2 , SiC, KNa 2 , CuZn 3, Al 2 O 3 , NaH, Ca 2 Si, Mg 3 N 2 , Na 2 SO 4 , K 3 PO 4 и т.д.

Формульные единицы можно рассматривать как структурные единицы веществ немолекулярного строения. Для веществ молекулярного строения таковыми, очевидно, являются реально существующие молекулы.

С помощью химических формул записываются уравнения химических реакций.

Химическое уравнение - это условная запись химической реакции с помощью химических формул и других знаков (равно, плюс, минус, стрелками др.).

Химическое уравнение является следствием закона сохранения массы, поэтому оно составляется так, чтобы числа атомов каждого элемента в его обеих частях были равными.

Цифры перед формулами называются стехиометрическими коэффициентами , при этом единица не записывается, но подразумевается (!) и учитывается при подсчете общей суммы стехиометрических коэффициентов. Стехиометрические коэффициенты показывают, в каких мольных отношениях реагируют исходные вещества и образуются продукты реакции. Например, для реакции, уравнение которой

3Fe 3 O 4 + 8Al = 9Fe + 4Al 2 O 3

n (Fe 3 O 4) n (Al) = 3 8 ; n (Al) n (Fe) = 8 9 и т.д.

В схемах реакций коэффициенты не расставляют и вместо знака равенства используют стрелку:

FeS 2 + O 2 → Fe 2 O 3 + SO 2

Стрелка применяется и при записи уравнений химических реакций с участием органических веществ (чтобы не путать знак равно с двойной связью):

CH 2 =CH 2 + Br 2 → CH 2 Br–CH 2 Br,

а также уравнений электрохимической диссоциации сильных электролитов:

NaCl → Na + + Cl − .

Закон постоянства состава

Для веществ молекулярного строения справедлив закон постоянства состава (Ж. Пруст, 1808): всякое вещество молекулярного строения независимо от способа и условий получения имеет постоянный качественный и количественный состав.

Из закона постоянства состава следует, что в молекулярных соединениях элементы должны находиться в строго определенных массовых пропорциях, т.е. иметь постоянную массовую долю. Это верно, если изотопный состав элемента не изменяется. Например, массовая доля атомов водорода в воде независимо от способа ее получения из природных веществ (синтез из простых веществ, нагревание медного купороса CuSO 4 · 5H 2 O и др.) будет всегда равна 11,1 %. Однако в воде, полученной взаимодействием молекул дейтерия (нуклид водорода с A r ≈ 2) и природного кислорода (A r = 16), массовая доля атомов водорода

w (H) = 2 ⋅ 2 2 ⋅ 2 + 16 = 0,2 (20 %) .

Вещества, подчиняющиеся закону постоянства состава, т.е. вещества молекулярного строения, называются стехиометрическими .

Вещества немолекулярного строения (особенно карбиды, гидриды, нитриды, оксиды и сульфиды металлов d -семейства) закону постоянства состава не подчиняются, поэтому их называют нестехиометрическими . Например, в зависимости от условий получения (температура, давление) состав оксида титана(II) переменный и колеблется в пределах TiO 0,7 –TiO 1,3 , т.е. в кристалле этого оксида на 10 атомов титана может приходиться от 7 до 13 атомов кислорода. Однако для многих веществ немолекулярного строения (KCl, NaOH, CuSO 4) отклонения от постоянства состава весьма незначительны, поэтому можно считать, что их состав практически не зависит от способа получения.

Относительная молекулярная и формульная масса

Для характеристики веществ соответственно молекулярного и немолекулярного строения вводятся понятия «относительная молекулярная масса» и «относительная формульная масса», которые обозначаются одинаковым символом - M r

Относительная молекулярная масса - безразмерная физическая величина, которая показывает, во сколько раз масса молекулы больше 1/12 части массы атома нуклида С-12:

M r (B) = m мол (B) u . (1.5)

Относительная формульная масса - безразмерная физическая величина, которая показывает, во сколько раз масса формульной единицы больше 1/12 части массы атома нуклида С-12:

M r (B) = m ФЕ (B) u . (1.6)

Формулы (1.5) и (1.6) позволяют находить массу молекулы или ФЕ:

m (мол, ФЕ) = uM r . (1.7)

На практике значения M r находят суммированием относительных атомных масс элементов, образующих молекулу или формульную единицу, с учетом числа отдельных атомов. Например:

M r (H 3 PO 4) = 3A r (H) + A r (P) + 4A r (O) =

3 ⋅ 1 + 31 + 4 ⋅ 16 = 98.



Загрузка...