emou.ru

Электролиз соли nacl. Волновое уравнение. Квантовомеханическое объяснение строения атома

Неопределенность установления положения и скорости электрона столь велика, что необходимо вообще отказаться от анализа траектории его движения. Однако есть возможность вероятностного описания строения атома.

Согласно квантовой механике, движение электрона в атоме описывается волновым уравнением (уравнение Шредингера):

где  – волновая функция;

m – масса покоя электрона m e =9,109 . 10 -31 кг;

U – потенциальная энергия;

E – полная энергия электрона;

x , y , z – координаты.

Решением уравнения Шредингера является волновая функция  и соответствующее ей значение энергии электрона E . Вероятность нахождения электрона в пространстве характеризуется квадратом волновой функции, т.е. величиной  2 . Для описания строения атома можно рассматривать электрон как бы “размазанным” в пространстве в виде электронного облака. Величина  2 , полученная из волнового уравнения, является мерой электронной плотности в данном элементе объема, или мерой вероятности нахождения электрона в данном элементе объема атома.

Таким образом, в квантовомеханической (вероятностной) модели атома исчезает смысл орбиты, на которой находится электрон. Взамен ее мы имеем дело с электронной плотностью, “размазанной” в пространстве атома. Тело, образованное “размазанным” электроном, называют орбиталью. Обычно под орбиталью понимают часть пространства, заключающую 90% электронного облака.

Наличие трех измерений пространства приводит к тому, что в выражении волновой функции , являющейся решением уравнения Шредингера, появляются три величины, которые могут принимать только дискретные целочисленные значения – три квантовых числа. Они обозначаются символами n , l и m l . Эти квантовые числа характеризуют состояние электрона не только в атоме водорода, но и в любом другом атоме.

Характеристика электронов квантовыми числами .

а) Главное квантовое число (n ) определяет средний радиус электронного облака, или общую энергию электрона на данном уровне. Оно принимает натуральные значения от 1 до . В реальных атомах n имеет 7 значений, обозначаемых латинскими буквами K, L, M, N, O, P, Q. Значение n =1 отвечает уровню с самой низкой энергией (т.е. наиболее устойчивому состоянию электрона). Теоретически количество уровней не ограничено, но в атоме главным образом бывают заняты электронами уровни с низкой энергией.

б) Побочное, или орбитальное, квантовое число (l ) . В спектрах многоэлектронных атомов наблюдается мультиплетная структура линий, т.е. линии расщеплены на несколько компонент. Мультиплетность линий означает, что энергетические уровни представляют собой совокупности энергетических подуровней, т.к. любой линии в спектре отвечает переход электрона из одного состояния в другое. Энергетические различия в состоянии электронов в данном уровне связаны с различием в форме электронных облаков.

Для характеристики энергетических подуровней используется орбитальное квантовое число l. Оно может принимать в пределах каждого уровня целочисленные значения от 0 до n–1. Таким образом, уровень в зависимости от l подразделяется на подуровни, которые имеют также буквенные обозначения: s (l=0), p (l=1), d (l=2), f (l=3). Электроны, находящиеся в этих состояниях, называются s-, p-, d- и f-электронами.

Форма s-электронного облака . Это облако обладает сферической симметрией, т.е. имеет форму шара. График волновой функции ψ расположен по одну сторону от оси абсцисс (рисунок 3), т.е. волновая функция s-электрона положительна.

Рисунок 3 – График волновой функции s-электрона в зависимости от расстояния до ядра. Форма s-орбитали

Форма p-электронного облака . Для p-электрона при удалении от ядра по некоторому направлению волновая функцияимеет перегиб (рисунок 4). По одну сторону от ядра  положительна, а по другую – отрицательна (не путать знак волновой функции со знаком электрического заряда!). В начале координат  обращается в нуль. В отличие от s-орбитали, p-орбиталь не обладает сферической симметрией, а имеет форму, напоминающую гантель (рисунок 4


Рисунок 4 – График волновой функции p-электрона. Форма p-электронного облака

Знаки “+” и “–” относятся не к вероятности нахождения электрона (она всегда положительна и равна  2), а к волновой функции, которая в разных частях электронного облака имеет различный знак.

Еще более сложную формуимеют электронные облака d- и f-электронов. Например,d-орбитали могут иметь четырехлепестковое строение, причем знаки волновой функции в “лепестках” чередуются:

в) Магнитное квантовое число(m l ). Если атом поместить во внешнее магнитное поле, то происходит дальнейшее расщепление спектральных линий. Это означает, что при данных значенияхn и l может существовать несколько состояний электрона с одинаковой энергией. Такие энергетические состояния называются вырожденными. Вырождение исчезает при воздействии на атом внешнего магнитного поля, что и приводит к появлению новых линий в спектре.

Энергетические изменения под действием магнитного поляобъясняются различием в характерерасположения электронных облаков в пространствеи, следовательно, их различной ориентацией по отношению к силовым линиям поля. Магнитное квантовое числоm l для данного подуровня – это целочисленная величина в диапазоне от –l до +l . Таким образом, при данном l оно имеет (2l+1) различных значений. Например, для s-подуровня (l=0) имеется только одно значение m l , равное нулю. Поэтому s-подуровень содержит единственную орбиталь. Для p-подуровня (l=1) возможны три значения: m l:{–1,0,1}. В соответствии с этим каждый p-подуровень состоит из трех орбиталей гантелеобразной формы, ориентированных перпендикулярно друг другу вдоль трех координатных осей и обозначаемых p x , p y , p z . Легко определить, что на d-подуровне (l=2) содержится 2l+1=5 орбиталей, а на f-подуровне (l=3) – 7 орбиталей.

На рисунке 5 показано постепенное усложнение представлений о структуре электронной оболочки атома (от уровней к подуровням и далее к орбиталям).


Рисунок 5 –Энергетическая диаграмма уровней с 1-го по 3-й

г) Спиновое квантовое число(m s ) не связано с движением электрона вокруг ядра, а определяет его собственное состояние. Природа этого состояния неизвестна до сих пор. Предполагается, что она связана с вращением электрона вокруг собственной оси"Spin" в переводе с английского ‑"кружение", "верчение".. Число m s принимает два значения: +1/2 и –1/2.

Для определения состояния электрона в многоэлектронном атоме важное значение имеет принцип Паули , согласно которому в атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковыми . Следовательно, каждая орбиталь, характеризующаяся определенными значениями n, l и m l , может быть занята не более чем двумя электронами, спины которых имеют противоположные знаки. Такие электроны называются спаренными.

Здесь электроны на орбиталях изображены стрелками, направленными вверх или вниз в зависимости от знака спинового квантового числа.

Поиск по сайту:

7.2ЭЛЕКТРОЛИЗ

7.2.1Электролиз расплавов и растворов электролитов

4 OH - - 4e 2 H 2 O + O 2

2 SO 4 2- - 4e 2 SO 3 + O 2

В водных растворах кроме ионов самого электролита находятся также молекулы воды и ионы H + и OH - , способные участвовать в электродных процессах. В этом случае при электролизе возможны конкурирующие реакции. Критерием, определяющим преимущество того или иного электродного процесса, служит величина его электродного потенциала . Чем выше потенциал, тем легче (при меньшей отрицательной поляризации электрода) происходит восстановление на катоде и труднее (при большей положительной поляризации электрода) осуществляется окисление на аноде.

Минимальный потенциал, при котором процесс электролиза становится возможным, называется потенциалом (напряжением) разложения или выделения. Его находят вычитанием электродного потенциала катиона из соответствующего значения электродного потенциала аниона. Например, потенциал разложения хлорида цинка равен E ° (Cl 2 /2Cl -) - E ° (Zn 2+ /Zn )=1,36-(-0,76)=2,12 В. Эта разность потенциалов, или ЭДС внутреннего гальванического элемента , возникающего в результате выделения на электродах продуктов электролиза, имеет направление, противоположное внешней ЭДС, которая служит источником тока. Поэтому электролиз возможен при условии компенсации внутренней ЭДС внешним напряжением. Часто реально необходимый потенциал разложения электролита оказывается больше теоретической величины. Эта разность называется перенапряжением .

Из-за кислородного перенапряжения при электролизе водных растворов хлоридов на аноде выделяется не кислород, а хлор , хотя его стандартный электродный потенциал (1,36В) имеет большее значение по сравнению с кислородным E ° (O 2 +4H + /2H 2 O)=1,23В.

А.И. Хлебников, И.Н. Аржанова, О.А. Напилкова

Электролизом называется совокупность процессов, происходящих при прохождении постоянного электрического тока через электрохимическую систему, состоящую из двух электродов и расплава или раствора электролита.

Примером электролиза может служить электролиз расплава хлорида магния. При прохождении тока через расплав катионы магния под действием электрического поля движутся к отрицательному электроду. Здесь, взаимодействуя с приходящими по внешней цепи электронами, они восстанавливаются

Анионы хлора перемещаются к положительному электроду и, отдавая избыточные электроны, окисляются. При этом первичным процессом является собственно электрохимическая стадия - окисление ионов хлора

а вторичным - связывание образующихся атомов хлора в молекулы:

Складывая уравнения процессов, протекающих у электродов, получим суммарное уравнение окислительно-восстановительной реакции, происходящей при электролизе расплава :

Эта реакция не может протекать самопроизвольно; энергия, необходимая для ее осуществления, поступает от внешнего источника тока.

Как и в случае химического источника электрической энергии, электрод, на котором происходит восстановление, называется катодом; электрод, на котором происходит окисление, называется анодом. Но при электролизе катод заряжен отрицательно, а анод - положительно, т. е. распределение знаков заряда электродов противоположно тому, которое имеется при работе гальванического элемента. Причина этого заключается в том, что процессы, протекающие при электролизе, в принципе обратны процессам, идущим при работе гальванического элемента. При электролизе химическая реакция осуществляется за счет энергии электрического тока, подводимой извне, в то время как при работе гальванического элемента энергия самопроизвольно протекающей в нем химической реакции превращается в электрическую энергию.

При рассмотрении электролиза водных растворов нельзя упускать из виду, что, кроме ионов электролита, во всяком водном растворе имеются еще ионы, являющиеся продуктами диссоциации воды - и . В электрическом поле ионы водорода перемещаются к катоду, а ионы - к аноду. Таким образом, у катода могут разряжаться как катионы электролита, так и катионы водорода.

Аналогично у анода может происходить разряд как анионов электролита, так и гидроксид-ионов. Кроме того, молекулы воды также могут подвергаться электрохимическому окислению или восстановлению.

Какие именно электрохимические процессы будут протекать у электродов при электролизе, прежде всего будет зависеть от относительных значений электродных потенциалов соответствующих электрохимических систем. Из нескольких возможных процессов будет протекать тот, осуществление которого сопряжено с минимальной затратой энергии. Это означает, что на катоде будут восстанавливаться окисленные формы электрохимических систем, имеющих наибольший электродный потенциал, а на аноде будут окисляться восстановленные формы систем с наименьшим электродным потенциалом. На протекание некоторых электрохимических процессов оказывает тормозящее действие материал электрода; такие случаи оговорены ниже.

Рассматривая катодные процессы, протекающие при электролизе водных растворов, ограничимся важнейшим случаем- катодным восстановлением, приводящим к выделению элементов в свободном состоянии. Здесь нужно учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит от концентрации ионов водорода (см. стр. 273) и в случае нейтральных растворов имеет значение В. Поэтому, если катионом электролита является металл, электродный потенциал которого значительно поло-жительнее, чем -0,41 В, то из нейтрального раствора такого электролита на катоде будет выделяться металл. Такие металлы находятся в ряду напряжений вблизи водорода (начиная приблизительно от олова) и после него. Наоборот, если катионом электролита является металл, имеющий потенциал значительно более отрицательный, чем -0,41 В, металл восстанавливаться не будет, а произойдет выделение водорода. К таким металлам относятся металлы начала ряда напряжений - приблизительно до титана. Наконец, если потенциал металла близок к значению -0,41 В (металлы средней части ряда - ), то в зависимости от концентрации раствора и условий электролиза возможно как восстановление металла, так и выделение водорода; нередко наблюдается совместное выделение металла и водорода.

Электрохимическое выделение водорода из кислых растворов происходит вследствие разряда ионов водорода. В случае же нейтральных или щелочных сред оно является результатом электрохимического восстановления воды:

Таким образом, характер катодного процесса при электролизе водных растворов определяется прежде всего положением соответствующего металла в ряду напряжений. В ряде случаев большое значение имеют раствора, концентрация ионов металла и другие условия электролиза.

При рассмотрении анодных процессов следует иметь в виду, что материал анода в ходе электролиза может окисляться. В связи с этим различают электролиз с инертным анодом и электролиз с активным анодом. Инертным называется анод, материал которого не претерпевает окисления в ходе электролиза. Активным называется анод, материал которого может окисляться в ходе электролиза. В качестве материалов для инертных анодов чаще всего применяют графит, уголь, платину.

На инертном аноде при электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а также фторо-водорода и фторидов происходит электрохимическое окисление воды с выделением кислорода. В зависимости от раствора этот процесс протекает по-разному и может быть записан различными уравнениями. В щелочной среде уравнение имеет вид

а в кислой или нейтральной:

В рассматриваемых случаях электрохимическое окисление воды является энергетически наиболее выгодным процессом. Кислородсодержащие анионы или не способны окисляться, или их окисление происходит при очень высоких потенциалах. Например, стандартный потенциал окисления иона

равен 2,01 В, что значительно превышает стандартный потенциал окисления воды (1,229 В). Стандартный потенциал окисления иона имеет еще большее значение (2,866 В).

При электролизе водных растворов бескислородных кислот и их солей (кроме HF и фторидов) у анода разряжаются анионы. В частности, при электролизе растворов и их солей у анода выделяется соответствующий галоген. Отметим, что выделение хлора при электролизе и ее солей противоречит взаимному положению систем

в ряду стандартных электродных потенциалов.

Эта аномалия связана со значительным перенапряжением (см. § 104) второго и этих двух электродных процессов - материал анода оказывает тормозящее действие на процесс выделения кислорода.

В случае активного анода число конкурирующих окислительных процессов возрастает до трех: электрохимическое окисление воды с выделением кислорода, разряд аниона (т. е. его окисление) и электрохимическое окисление металла анода (так называемое анодное растворение металла). Из этих возможных процессов будет идти тот, который энергетически наиболее выгоден. Если металл анода расположен в ряду стандартных потенциалов раньше обеих других электрохимических систем, то будет наблюдаться анодное растворение металла. В противном случае будет идти выделение кислорода или разряд аниона.

Рассмотрим несколько типичных случаев электролиза водных растворов.



Загрузка...