emou.ru

Всасывание в тонкой кишке. Функция всасывания тонкой кишки. Всасывание белков

В нормальных условиях пищевые белки почти полностью расщепляются на составляющие их аминокислоты, которые затем быстро всасываются в кишечнике. Возможно, что некоторые гидролитические процессы (например, в случае дипептидов) полностью завершаются в кишечной стенке. Потребность животных в белке может с успехом удовлетворяться скармливанием полной смеси аминокислот.

Природные (L-) изомеры (но не D-изомеры) аминокислот подвергаются активному переносу через кишечную стенку от слизистой ее поверхности к серозной; в этом переносе может участвовать витамин В6 (пиридоксальфосфат). Активный транспорт L-аминокислот представляет собой энергозависимый процесс; об этом свидетельствует его ингибирование разобщителем окислительного фосфорилирования 2,4-динитрофенолом. Аминокислоты переносятся через щеточную каемку целым рядом переносчиков, многие из которых действуют при посредстве Na+-зависимых механизмов, подобно системе переноса глюкозы (рис. 53.4). К числу -зависимых переносчиков относятся переносчик нейтральных аминокислот, переносчик фенилаланина и метионина и переносчик, специфичный для иминокислот, таких, как пролин и гидроксипролин. Охарактеризованы и независимые от Na+ переносчики, специализированные в отношении транспорта нейтральных и липофильных аминокислот (например, фенилаланина и лейцина) или катионных аминокислот (например, лизина).

Клинические аспекты. Лица, у которых возникает иммунологическая реакция на прием белка, по-видимому, обладают способностью к всасыванию некоторого количества негидролизованного белка, потому что переваренный белок лишен антигенных свойств. Это предположение не является полностью умозрительным, ведь известно, что антитела молозива поступают в кровь младенца.

Получает все новые и новые подтверждения гипотеза, согласно которой при нетропическом спру

Таблица 53.12. Место всасывания пищевых веществ


основной дефект локализуется в клетках слизистой кишечника и выражается в том, что, во-первых, полипептиды, образующиеся при пептическом и триптическом переваривании клейковины (главного белка пшеницы), оказывают на кишечник повреждающее действие, а во-вторых, они (эти полипептиды) всасываются в кровоток, что индуцирует образование соответствующих антител. Заметим, что антитела против клейковины или ее фракций часто обнаруживаются в крови больных нетропическим спру. Повреждающий эффект скорее всего принадлежит компоненту, представляющему собой полипептид, состоящий из 6 или 7 аминокислот, в число которых обязательно должны входить глутамин и пролин.

Анализ данного заболевания позволяет предположить, что при определенных условиях в кишечнике может происходить всасывание белковых фрагментов больших молекулярных размеров, чем аминокислоты.

В табл. 53.12 и 53.13 суммированы данные о том, в каких именно участках кишечника всасываются те или иные соединения, и, кроме того, содержатся сведения о нарушениях, возникающих в результате расстройства их всасывания.

У взрослого человека пищевые белки в неизмененом виде не всасываются. Только у новорожденного в первые дни жизни цельные белки молока поступают из кишечника в кровь, о чем свидетельствует появление в плазме ребенка материнских глобулинов, которые обеспечивают иммунитет.

После того, как в просвете кишечника завершается гидролитическое расщеплениее белков, продукты этого расщепления (аминокислоты и олигопептиды) захватываются энтероцитами.

Всасывание аминокислот протекает с участием стереоспецифичных натрий-зависимых систем активного транспорта, расположенных в мембране энтероцита, обращенной в просвет кишечника.

Белки пищи начинают расщепляться в желудке под действием пепсина. Завершают их гидролиз в основном ферменты поджелудочной железы: эндопептидазы (трипсин, химотрипсин) и экзопептидазы (карбоксипептидазы, аминопептидазы). В итоге образуются олигопептиды, дипептиды и аминокислоты.

Итак, гидролиз белков до аминокислот идет в 3 местах: в просвете кишки, в щеточной каемке и в цитоплазме энтероцита.

Переваривание жиров. Обычно различают три стадии жирового обмена: 1) расщепление ивсасывание жиров в желудочно-кишечном тракте; 2) превра­щение всосавшихся жиров в тканях организма; 3) выделение продуктов жиро­вого обмена из организма. Основная часть пищевых жиров подвергается пе­ревариванию в верхних отделах кишечника при участии фермента липазы, который выделяется поджелудочной железой и слизистой оболочкой желуд­ка. В результатерасщепления образуется смесь жирных кислот, ди- и моног­лицеридов. Процессу расщепления и всасывания жиров и других липидов способ­ствует выделение в кишечник желчных кислот, благодаря которым жиры пе­реходят в эмульгированное состояние. Часть жиров всасывается в кишечнике в нерасщепленном виде. Всосавшиеся жирные кислоты частично использу­ются вслизистой оболочке кишечника для ресинтеза триглицеридов и фос­фолипидов, а частично переходят в кровь системы воротной вены или в лим­фатические сосуды. Количество нейтральных жиров и жирных кислот в крови непостоянно и зависит от поступления жиров с пищей и от скорости отложения жира в жировых депо. В тканях жиры расщепляются под действием различных липаз, а образовавшиеся жирные кислоты входят в состав других соединений (фосфолипиды, эфиры холестерина и т.д.) или окисляются до конечных про­дуктов. Окисление жирных кислот совершается несколькими путями. Часть жирных кислот при окислении впечени дает ацетоуксусную и b-оксимасля­ную кислоты, а также ацетон. При тяжелом сахарном диабете количество ацетоновых тел в крови резко увеличивается. Синтез жиров в тканях проис­ходит из продуктов жирового обмена, а также из продуктов углеводного и белкового обмена.

В желудке капли жира дробятся. Попадая в двенадцатиперстную кишку, жир и соляная кислота вызывают выброс соответственно холецистокинина и секретина, стимулирующих выделение желчи и панкреатического сока. Компоненты этих двух секретов - желчные кислоты с одной стороны, липаза и колипаза панкреатического сока с другой - обеспечивают переваривание и всасывание жиров.

Переваривание жиров в полости кишечника. Желчные кислоты обладают высокой поверхностной активностью. Неполярные (гидрофобные) группы их молекул присоединяются к жирам, и в результате капли жира становятся окруженными слоем желчных кислот, полярные (гидрофильные) группы которых обращены наружу. Благодаря этому на молекулы жиров, расположенные на поверхности этих капель, может действовать гидрофильная липаза. Кроме того, желчные кислоты очищают поверхность капли жира от экзогенных и эндогенных белков. Колипаза (белок панкреатического сока, присутствующий в нем в виде проколипазы) удерживает липазу у поверхности капли. Без колипазы липаза "смывалась" бы желчными кислотами.

Липаза, колипаза и желчные кислоты вместе образуют комплекс, гидролизующий жир. Основные конечные продукты гидролиза - 2-моноглицериды и жирные кислоты, менее 5% жира остается в виде ди- и триглицеридов.

При той концентрации желчных кислот, которая создается в кишечнике на высоте пищеварения (5-15 ммоль/л), они соединяются в так называемые мицеллы. В них проникают жирные кислоты и моноглицериды, образуя смешанные мицеллы. Это способствует удержанию жирных кислот и моноглицеридов в растворе (именно поэтому взвесь триглицеридов мутная, а смешанных мицелл - прозрачная). Образование мицелл лучше всего идет при участии конъюгированных желчных кислот и при нормальном рН кишечного содержимого.

Обмен жира внутри энтероцита. В составе смешанных мицелл моноглицериды и жирные кислоты свободно проходят через неподвижный слой жидкости, покрывающей энтероцит, а затем диффундируют в клетку, покидая мицеллу. В двенадцатиперстной кишке одновременно существуют крупные смешанные мицеллы, насыщенные продуктами липолиза, и еще более крупные жидкокристаллические липосомы, насыщенные свободными жирными кислотами и желчными кислотами. Эти состояния могут переходить друг в друга. Попав в энтероцит, жирные кислоты связываются с особыми белками, и дальнейшая их судьба зависит от длины цепи.

Длинноцепочечные жирные кислоты (16 и 18 атомов углерода) и содержащие их моноглицериды сразу этерифицируются в триглицериды ферментами эндоплазматического ретикулума. Далее вместе с холестерином, фосфолипидами и апопротеинами они образуют хиломикроны и ЛПОНП, которые накапливаются в аппарате Гольджи и секретируются в лимфатические капилляры.

Среднецепочечные жирные кислоты (8-12 атомов углерода) сразу попадают в портальный кровоток, где связываются с альбумином. Этерифицируется и участвует в образовании липопротеидов лишь небольшая их часть.

Переваривание углеводов:

Углеводный обмен представляет собой совокупность процессов прев­ращений углеводов в организме человека и животных. Процесс превращений углеводов начинается с переваривания их в рото­вой полости, где происходит частичное расщепление крахмала под действием ферментаслюны - амилазы. В основном углеводы перевариваются и всасы­ваются в тонком кишечнике и затем с током крови разносятся в ткани и ор­ганы, а основная часть их, главным образом глюкоза, накапливается в печени в виде гликогена. Глюкоза с кровью поступает в те органы и ткани, где воз­никает потребность в ней, причем скорость проникновения глюкозы в клетки определяетсяпроницаемостью клеточных оболочек. В клетки печени глюко­за проникает свободно, в клетки мышечной ткани проникновение глюкозы связано с затратой энергии; во время мышечной работы проницаемость кле­точной стенки значительно возрастает. В клетках глюкоза претерпевает про­цесс превращений на молекулярном уровне в процессе биологического окис­ления с накоплениемэнергии. При окислении глюкозы в пентозном (аэробном) цикле образуется вос­становленныйникотинамид-адениннуклеотидфосфат, необходимый для вос­становительных синтезов. Кроме того промежуточные продукты этого цикла являются материалом для синтеза многих важных соединений. Регуляция углеводного обмена в основном осуществляется гормонами ицентральной нервной системой. О состоянии углеводного обмена можно су­дитьпо содержанию сахара в крови (в норме 70-120 мг%).

Субстрат и конечные продукты Фермент и место его выработки Механизм действия
Крахмал до олигосахаридов и амилопектин Слюнные железы альфа-амилаза Расщепляет альфа-1,4-связи амилозы в составе крахмала опт. рН 6,7
Крахмал до олигосахаридов Поджелудочная железа Панкреатическая амилаза Расщепляет альфа-1,4-связи амилозы в составе крахмала опт. рН 7,1
Крахмал и олигосахариды до мальтозы и глюкозы Ферменты, связанные с мембраной энтероцитов амилаза Глюкоамилаза
Гликоген, амилопектин до олигосахаридов, мальтозы, глюкозы олиго-альфа1,6-глюкозидаза Расщепляет альфа-1,6связи амилопектина
Сахароза до фруктозы и глюкозы Дисахаридазы Сахараза Бета-фруктозидаза
Мальтоза до глюкозы Мальтаза Альфа-глюкозидаза, расщепляет альфа-1,4-связи
Мальтоза до глюкозы Изомальтаза Действует аналогично альфа-1,6-глюкозидазе
Лактоза до галактоы и глюкозы Лактаза Бета-галактозидаза

Всасывание углеводов

Полисахариды и дисахариды практически не всасываются. В специальных экспериментах после скармливания животным больших количеств крахмала в слизистой оболочке кишечника с ее внутренней стороны были обнаружены гранулы, содержащие этот полисахарид. По-видимому, эти гранулы были втерты в слизистую оболочку во время перистальтических движений.

Всасывание моносахаридов галактозы и глюкозы происходит в два этапа с помощью активного транспорта. Прежде всего сахаридазы, расположенные в щеточной каемке энтероцитов, расщепляют олигосахариды до моносахаридов, которые переносятся в клетку с участием системы натрий- зависимого транспорта. При этом моносахариды в присутствии ионов натрия связываются с переносчиком. Присоединив натрий и глюкозу, этот переносчик диффундирует по электрохимическому градиенту для ионов натрия к внутренней стороне мембраны. Затем он высвобождает ион натрия и глюкозу в цитоплазму и диффундирует обратно к наружной поверхности энтероцита. Сравнительно низкое содержание натрия в клетке поддерживается благодаря действию энергозависимого натриевого насоса, работа которого косвенно способствует постоянной диффузии переносчика, связанного с натрием, к внутренней стороне мембраны.

Манноза и пентозы поступают в клетку путем простой, а фруктоза - путем облегченной диффузии (пассивный транспорт).

Высвобождение моносахаридов в области боковой и базальной поверхности энтероцита, по современным представлениям, не зависит от ионов натрия.

Выделившиеся моносахариды удаляются от кишечника по ветвям воротной вены.

Значительную часть углеводов пищи составляет крахмал. Этот полисахарид состоит из остатков глюкозы; амилаза слюны и панкреатическая амилаза гидролизуют его до олигосахаридов и далее - до дисахаридов (в основном мальтозы). Моносахариды (например, глюкоза) всасываются сразу, а дисахариды сначала расщепляются дисахаридазами щеточной каемки энтероцитов. Дисахаридазы разделяют на бета-галактозидазы (лактаза) и альфа-глюкозидазы (сахараза, мальтаза). Они расщепляют лактозу на глюкозу и галактозу, сахарозу - на глюкозу и фруктозу, мальтозу - на 2 молекулы глюкозы. Образовавшиеся моносахариды переносятся через энтероцит и попадают в воротную систему печени. Большинство дисахаридов гидролизуются очень быстро, происходит насыщение белков-переносчиков, и часть моносахаридов диффундирует обратно в просвет кишки. Гидролиз лактозы идет медленнее, и поэтому именно он ограничивает скорость ее всасывания.

Глюкоза и галактоза всасываются путем котранспорта с натрием, концентрационный градиент которого создается Na+,К+-АТФазой базолатеральной мембраны энтероцита. Это - так называемый вторичный активный транспорт.
12. Анатомо-физиологическая характеристика сердечно-сосудистой системы. Показатели деятельности сердца (ЧСС, УОК, МОК). Кровяное давление. Влияние занятий физической культурой и спортом на сердечно-сосудистую систему. . Кровеносная система состоит из сердца и кровеносных сосудов. Сердце - главный орган кровеносной системы - представляет собой полый мышечный орган, совершающий ритмические сокращения, благодаря которым происходит процесс кровообращения в организме. Сердце - автономное, автоматическое устройство. С.С.С. состоит из большого и малого кругов кровообращения . Левая половина сердца обслуживает большой круг

кровообращения, правая - малый. Большой круг кровообращения начинается от левого желудочка сердца, проходит через ткани всех органов и возвращается в правое предсердие. Из правого предсердия кровь переходит в правый желудочек, откуда начинается малый круг кровообращения, который проходит через легкие, где венозная кровь, отдавая углекислый газ и насыщаясь кислородом, превращается в артериальную и направляется в левое предсердие. Из левого предсердия кровь поступает в левый желудочек и оттуда вновь в большой круг кровообращения.

Деятельность сердца заключается в ритмичной смене сердечных циклов, состоящих из трех фаз: сокращения предсердий, сокращения желудочков и общего расслабления сердца.

ЧСС (пульс) - важный показатель дающий информацию с деятельности сердечно-сосудистой системы (ССС). Его рекомендуется подсчитывать регулярно, в одно и тоже время суток в покое. Лучше всего утром, лежа после пробуждения. Необходимо обращать внимание на сердечный ритм. При нормальном ритме удары пульса воспринимаются через одинаковые отрезки времени. Бывают случаи, когда при исследовании пульса между ударами ощущаются неравные промежутки. Такой пульс называется аритмичным.
Многие спортсмены, осуществляя самоконтроль, самостоятельно проводят ортостатическую пробу. В норме у взрослого нетренированного мужчины ЧСС колеблется в пределах 60-80 ударов в минуту. В положении лежа пульс в среднем на 10 ударов меньше, чем стоя. По разнице пульса в положении лежа и стоя (ортостатическая проба) можно судить о состоянии вегетативной нервной системы. Резкое учащение пульса более 80 уд/мин (тахикардия) и резкое замедление пульса менее 60 уд/мин (брадикардия) по сравнению с предыдущими показателями может являться следствием переутомления либо заболевания (паталогии) сердца.

Пульс - волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту под большим давлением при сокращении левого желудочка. Частота пульса соответствует частоте сокращений сердца. Частота пульса в покое (утром, лежа, натощак) оказывается ниже из-за увеличения мощности каждого сокращения. Урежение частоты пульса увеличивает абсолютное время паузы для отдыха сердца и для протекания процессов восстановления в сердечной мышце. В покoe пульс здорового человека равен 60-70 удар/мин.

Сокращение серд.м-цы – систола , расслабление – диастола .

Длительность серд. цикла зависит от ЧСС. (П: Сердеч.ритм 75 (ЧСС – 75) в мин;систола предсердий 0,1;сист желуд – 0,33; общ.диастола -0,37с;)

Лев. и прав. желудочки при каждом сокращении выбрасывают в аорту и легочн. артерии 60-80 мл крови; этот объем назыв-ся систолическим или ударным объем. крови УОК ).

МОК=УОК х ЧСС . МОК в средн. = 4,5-5 л. Сердеч-й индекс = отношение МОК к площади поверхности тела(у взр.= 2,5-3,5 л мин м в кв., при мыш деят-ти УОК = 100-150 мл, а МОК =до 35 л.

Движение крови по сосудам обусловлено градиентом давления в артериях и венах, которое подчинено законам гидродинамики, определяется силами давления и сопротивления, которые возникают при трении о стенки сосудов. Сила, кот. созд-т давление в сосуд-й сист. – это работа сердца, его сокращение. Сопротивление кровотока зависит от диаметра сосу-в, длины, тонуса, ОЦК, вязкости. При уменьшении просвета – давление выше, сопротивление возрастает.

Различают: объемную и линейную скорости движения крови.

Объемная скорость кровотока – кол-во крови, кот протекает за 1 мин через всю кровеносную систему. Эта величина соответствует МОК и измер. в мл (4,5-5л).

Линейная скорость кровотока – скорость движения частиц крови вдоль сосудов (см в сек). Она неодинакова: больше в центре сосудов и меньше около стенок, выше в аорте и крупн. артериях и ниже в венах, самая низкая в капиллярах. При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением в следствии сопротивления кровеносных сосудов передвижению крови, в сосудах создается давление, кот называется кровяным давлением. Наибольшее давл. в аорте и крупн. артериях, в мелких артериях, капиллярах и венах оно снижается. колебания кровяного давл. при систоле и диастоле происходят в аорте и артериях; в артериолах и венах давл. крови постоянно на протяжении серд. цикла. Величина АД зависит от сократительной силы миокарда, от величины МОК, длины, тонуса, емкости сосудов и вязкости крови. Следовательно, давление в артериях будет тем выше, чем сильнее сокращение сердца и чем больше сопротивление (тонус сосудов).

13. Анатомо-физиологическая характеристика центральной нервной системы. Рефлекторная луга. Проявление статических и статокинетических рефлексов в различных физических упражнениях. Нервная система состоит из центрального (головной и спинной мозг) w. периферического отделов (нервов, отходящих от головного и спинного мозга и расположенных на периферии нервных узлов). Центральная нервная система координирует деятельность различных органов и систем организма и регулирует эту деятельность в условиях изменяющейся внешней среды по механизму рефлекса. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека. Спинной мозг лежит в спинно-мозговом канале, образованном дужками позвонков. Первый шейный позвонок - граница спинного мозга сверху, а граница снизу - второй поясничный позвонок. Спинной мозг делится на пять отделов с определенным количеством сегментов: шейный, грудной, поясничный, крестцовый и копчиковый. В центре спинного мозга имеется канал, заполненный спинномозговой жидкостью. На поперечном разрезе лабораторного препарата легко различают серое и белое вещество мозга. Серое вещество мозга образовано скоплением тел нервных клеток (нейронов), периферические отростки которых в составе спинномозговых нервов достигают различных рецепторов кожи, мышц, сухожилий, слизистых оболочек. Белое вещество, окружающее серое, состоит из отростков, связывающих между собой нервные клетки спинного мозга; восходящих чувствительных (аферентных), связывающих все органы и ткани (кроме головы) с головным мозгом; нисходящих двигательных (эфферентных) путей, идущих от головного мозга к двигательным клеткам спинного мозга. Итак, спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функции. В различных отделах спинного мозга находятся мотонейроны (двигательные нервные клетки), иннервирующие мышцы верхних конечностей, спины, груди, живота, нижних конечностей. В крестцовом отделе располагаются центры дефекации, мочеиспускания и половой деятельности. Важнаяфункция мотонейронов в том, что они постоянно обеспечивают необходимый тонус мышц, благодаря которому все рефлекторные двигательные акты осуществляются мягко и плавно. Тонус центров спинного мозга регулируется высшими отделами центральной нервной системы. Поражения спинного мозга влекут за собой различные нарушения, связанные с выходом из строя проводниковой функции. Всевозможные травмы и заболевания спинного мозга могут приводить к расстройству болевой, температурной чувствительности, нарушению структуры сложных произвольных движений, мышечного тонуса.

Головной мозг представляет собой скопление огромного количества нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отделов. Строение головного мозга несравнимо сложнее строения любого органа человеческого тела.

Кора больших полушарий головного мозга - наиболее молодой в филогенетическом отношении отдел головного мозга (филогенез - процесс развития растительных и животных организмов в течение времени существования жизни на Земле). В процессе эволюции кора больших полушарий стала высшим отделом центральной нервной системы, формирующим деятельность организма как единого целого в его взаимоотношениях с окружающей средой. Мозг активен не только во время бодрствования, но и во время сна. Мозговая ткань потребляет в 5 раз больше кислорода, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% массы тела человека, мозг поглощает 18- 25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы. Он использует 60-70% глюкозы, образуемой печенью, и это несмотря на то, что мозг содержит меньше крови, чем другие органы. Ухудшение кровоснабжения головного мозга может быть связано с гиподинамией. В этом случае возникает головная боль различной локализации, интенсивности и продолжительности, головокружение, слабость, понижается умственная работоспособность, ухудшается память, появляется раздражительность. Чтобы охарактеризовать изменения умственной работоспособности, используется комплекс методик, оценивающих различные ее компоненты (внимание, объем памяти и восприятия, логическое мышление).

Вегетативная " нервная система - специализированный отдел нервной системы, регулируемый корой больших полушарий. В отличие от соматической нервной системы, иннервирующей произвольную (скелетную) мускулатуру и обеспечивающей общую чувствительность тела и других органов чувств, вегетативная нервная система регулирует деятельность внутренних органов - дыхания, кровообращения, выделения, размножения, желез внутренней секреции. Вегетативная нервная система подразделяется на симпатическую и парасимпатическую системы Деятельность сердца, сосудов, органов пищеварения, выделения, половых и других, регуляция обмена веществ, термообразоваиия, участие в формировании эмоциональных реакций (страх, гнев, радость) - все это находится в ведении симпатической и парасимпатической нервной системы и под контролем высшего отдела центральной нервной системы.

Рецепторы и анализаторы Способность Организма быстро приспосабливаться к изменениям окружающей среды реализуется благодаря специальным образованиям - рецепторам, которые, обладая

строгой специфичностью, трансформируют внешние раздражители (звук, температуру, свет, давление) в нервные импульсы, поступающие по нервным волокнам в центральную нервную систему. Рецепторы человека делятся на две основные группы: экстеро- (внешние) и интеро- (внутренние) рецепторы. Каждый такой рецептор является составной частью анализирующей системы, которая называется анализатором. Анализатор состоит из трех отделов - рецептора, проводниковой части и центрального образования в головном мозге.

Высшим отделом анализатора является корковый отдел: кожный анализатор (тактильная, болевая, тепловая, холодовая чувствительность); двигательный (рецепторы в мышцах, суставах, сухожилиях и связках возбуждаются под влиянием давления и растяжения); вестибулярный (расположен во внутреннем ухе и воспринимает положение тела в пространстве); зрительный (свет и цвет); слуховой (звук); обонятельный (запах); вкусовой (вкус); висцеральный (состояние ряда внутренних органов).

Рефлекс – ответная реакция организма, в ответ на раздражение осуществляемая с участ. Н.С. Нервный путь рефлекса называется – рефлекторной дугой (нц- нервные центры)

Состав рефлект. Дуги: 1. воспринимающее образование – рецептор, 2. чувствительный (афферентный нейрон) – связывает рецептор с нц, 3. промежуточный (вставочный) - нейрон нц, 4. эфферентный нейрон (связывающий) – связывает нц с периферией, 5. рабочий орган, отвечающий на раздражение – мышца или железа. Выполняя ответные реакции, нц посылает команды к рабочему органу через эфферентные пути, кот выполняет роль каналов прямой связи . Каналы обратной связи – это афферентные пути сообщения в цнс о результате действия. Эта информация используется нц для управления дальнейшими действиями(прекращение, продолжение, изменение), следовательно, прямые и обратные связи нц с периферией = рефлекторное кольцо = целостная рефлекторная деятельность.

Механизмы мышечногосокращения Функции мышц регулируются различными отделами центральной нервной системы (ЦНС), которые во многом определяют характер их разносторонней активности (фазы движения, тонического напряжения и др.). Рецепторы Двигательного аппарата дают начало афферентным волокнам двигательного анализатора, которые составляют 30-50% волокон смешанных (афферентно-эфферентных) нервов, направляющихся в спинной мозг. Сокращение мышц Вызывает импульсы, которые являются источником мышечного чувства - кинестезии.

Передача возбуждения с нервного волокна на мышечное осуществляется через нервно-мышечный синапс (рис. 2.5), который состоит из двух разделенных щелью мембран - пресинаптической (нервного происхождения) и постсинаптической (мышечного происхождения). При воздействии нервного импульса выделяются кванты ацетилхолина, который приводит к возникновению электрического потенциала, способного возбудить мышечное волокно. Скорость проведения нервного импульса через синапс в тысячи раз меньше, чем в нервном волокне. Он проводит возбуждение только в направлении к мышце. В норме через нервно-мышечный синапс млекопитающих может пройти до 150 импульсов в одну секунду. При утомлении (или патологии) подвижность нервно-мышечных окончаний снижается, а характер импульсов может изменяться.

Химизм и энергетика мышечного сокращения. Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения. Химические превращения в мышце протекают как при наличии кислорода аэробных условиях), так и при его отсутствии (в анаэробных условиях).

Биологическое значение питания. Калорийность пищевого рациона и соответствие ее энерготратам организма. Сбалансированность пищевого рациона по белкам, жирам и углеводам. Особенности питания спортсменов.

Биологическое значение питания для организма многогранно:

пища служит источником энергии идя работы всех систем организма. Часть энергии идет на так называемый основной обмен, необходимый для поддержания жизни в состоянии полного покоя. Определенное количество энергии потребляется для переработки пищи в процессе пищеварения. Много энергии сгорает при работе мышечного аппарата;

пища поставляет организму «материал для строительства» - пластические вещества, из которых строятся новые клетки и внутриклеточные компоненты: ведь организм живет, клетки его постоянно разрушаются, их надо заменять новыми;

пища снабжает организм биологически активными веществами - витаминами, нужными, чтобы регулировать процессы жизнедеятельности;

пища играет информационную роль : она служит для организма химической информацией. Информационная сущность пищи заключается в определенной молекулярной структурированности пищевых веществ. Чем обширнее и многообразнее информация, тем больше ее ценностное содержание. Иначе говоря, чем шире диапазон питания организма (всеядность), тем более он приспособлен к среде обитания.

Характер питания спортсменов определяется особенностями обмена веществ при разных видах и различных степенях интенсивности спортивной нагрузки:

1) при кратковременных больших физических нагрузках;

Первый тип обмена веществ, отмечаемый при больших физических нагрузках, характеризуется повышением расхода пластических компонентов для энергетических целей, а также повышением использования внутримышечных источников энергии (фосфокреатина, гликогена) он расходуется главным образом для энергетических целей, обеспечивая интенсивную работу мышц. Второй тип обмена характерен для средних и умеренных нагрузок. При этом в большей степени используются внемышечные источники энергии, процессы гликолиза вытесняются процессами аэробного окисления и метаболические процессы в общем характеризуются устойчивостью. Наряду с этим здесь все же может быть кислородная задолженность той или иной степени. Третий тип обмена веществ характерен для длительно протекающих физических нагрузок средней и умеренной интенсивности. При этом отмечается возникновение вторичных нарушений устойчивого состояния метаболических процессов - усиление гликолиза, появление рабочей гипоксии, образование кислородной задолженности и др. Характерным для этого типа обмена веществ является длительность восстановительного периода. Приведенные особенности обмена веществ определяют требования к питанию спортсменов. В количественном отношении питание спортсменов должно быть достаточным и полностью возмещать энергетические и пластические затраты организма. Определения величин энергетических затрат при различных видах спортивной работы показали значительные колебания в зависимости от продолжительности и интенсивности выполняемой работы. Согласно официальным данным, потребность в калориях для спортсменов мужчин в дни напряженных тренировок и соревнований определена в 4500-5000 ккал и для женщин - в 3500-4000 ккал в день. При установлении величин калорийности суточных пищевых рационов спортсменов необходимо учитывать не только повышенные энергетические затраты спортсменов, но и характер занятия спортом с отрывом от постоянной работы или с совмещением занятий спортом с обычной работой. В условиях систематическою занятия спортом с отрывом от постоянной работы, например в условиях спортивных сборов, в зависимости от вида спортивной деятельности могут устанавливаться пищевые рационы определенной энергетической ценности

Потребность в белке

Интенсивная физическая нагрузка сопровождается повышенной потребностью в белке. При спортивной деятельности белок используется не только на пластические цели, связанные с восстановлением тканевых элементов, но и для образования новых клеток в мышечной ткани в процессе развития мускулатуры и поддержания ее в хорошем рабочем состоянии. При нормировании белка необходимо учитывать повышенный расход белка у спортсменов в процессе тренировки, а также в результате перегревания тела. Высокий уровень белкового питания сказывается положительно на общей работоспособности, повышая ее, а также на снижении утомляемости и наиболее быстром восстановлении сил и работоспособности. Установлено благоприятное влияние повышенных белковых норм на высшую нервную деятельность, на повышение возбудимости нервной системы, усиление рефлекторной деятельности, увеличение быстроты реакции и максимальной конденсации сил на короткий отрезок времени. Особенно важное значение имеет обеспечение высокого уровня белкового питания при скоростных и силовых нагрузках максимальной и субмаксимальной интепсивности, так как при этих видах спортивной нагрузки отмечается наибольшее повышение интенсивности белкового обмена. Достаточно высокий уровень белка в рационах в период отдыха после интенсивных спортивных нагрузок способствует увеличению синтеза мышечных белков и возрастанию силы мышц (Н. К. Попова, 1951). В среднем можно считать, что количество белка в пищевом рационе спортсмена должно составлять не менее 2 г. на 1 кг. веса тела. В периоды тренировок белка в рационе должно быть повышено до 2,5 г. на 1 кг веса. Согласно официальным рекомендациям, количество белка в пищевом рационе спортсменов в дни напряженных тренировок и соревнований для мужчин должно составлять 154-171 г. в день, из которых 77-86 г. должны быть животного происхождения. Для женщин соответственно потребность в белке составляет 120-137 г. в день, в том числе 60-69 г. животного белка. (яйца, творог, печеночные паштеты, мясо, телятина, птица, рыба, треска, судак и др.).

Потребность в жире

При нормировании жира в питании спортсменов необходимо учитывать ряд особенностей. Так, установлено, что при скоростных и силовых нагрузках использование жиров в качестве источников энергии мышечной деятельности ограничено. В соответствии с изложенным можно считать, что в пищевых рационах спортсменов следует предусматривать умеренные количества жира, особенно при упражнениях максимальной и субмаксимальной интенсивности, а также при упражнениях, отличающихся большой продолжительностью. Согласно рекомендациям величины физиологических потребностей в пищевых веществах и энергии, для спортсменов в дни напряженных тренировок и соревнований в суточном рационе: для мужчин предусматривается 145-161 г. жира, в том числе 44-48 г. растительного масла; для женщин соответственно предусмотрено 113-129 г. жира, из которых 34-39 г. за счет растительного масла. Эти количества, безусловно, могут быть снижены в дни физических нагрузок максимальной и субмаксимальной интенсивности, а также при физических нагрузках большой продолжительности.

Потребность в углеводах

Наиболее выгодными источниками энергии мышечной работы являются углеводы. Объясняется это тем, что углеводы способны в организме окисляться как аэробным, так и анаэробным путем. Все виды спортивной нагрузки, связанной со скоростными, силовыми и другими упражнениями различной интенсивности, а также нагрузки, характеризующиеся продолжительностью упражнений, сопровождаются усилением гликолиза, появлением рабочей гипоксии и образованием различной степени кислородной задолженности. Углеводы в наибольшей степени способны использоваться в организме как источники энергии в условиях относительной гипоксии и способствовать снижению ацидотических сдвигов, возникающих в организме в процессе интенсивной мышечной работы. В соответствии с принятыми физиологическими нормами общая потребность в углеводах спортсменов в дни интенсивных тренировок и соревнований определена для мужчин 615-683 г. и для женщин 477- 546 г. в день. При расчете на 1 кг веса тела потребность в углеводах может быть определена в количестве 8-10 г. углеводов на 1 кг веса тела. В составе суточной нормы углеводов не менее одной трети ее должны составлять легкоусвояемые углеводы (сахара); остальные две трети могут быть представлены крахмалом.

Потребность в витаминах

В спортивной практике в периоды интенсивных тренировок, связанных с большой физической нагрузкой, происходит усиленное расходование мышечного аденозинтрифосфата, ресинтез которого не успевает покрыть произведенные траты. В связи с этим способствующая роль пиридоксина в быстром ресинтезе аденозинтрифосфата приобретает особую актуальность. В витаминном обеспечении спортсменов должно предусматриваться достаточно высокое включение источников витамина В6, значение которого при больших физических нагрузках получает все большее подтверждение. Помимо важной роли пиридоксина в обмене веществ и его липотропных свойств, особо важное значение пирийоксина для спортсменов имеет его свойство способствовать быстрому ресннтезу аденозинтрифосфата при больших физических напряжениях.

Имеются данные о повышенной потребности организма спортсменов в тиамине, рибофлавине, ниацине, пиридоксине, витамине B12, фолиевой, пантотеновой и парааминобензойной кислотах. Механизм действия этих витаминов при апортивнои работе еще недостаточно выяснен и нуждается в дальнейшем изучении. За последнее время придается большое значение витамину Е этому внутриклеточному антиокислителю, который получает признание как обязательный компонент в литании спортсменов. По данным у спортсменов повышена потребность в витамине Е. Значение Е в спортивной практике как фактора, нормализующего мышечную деятельность, получает все большее подтверждение. Витамин Е во многих странах включен в число стимулирующих средств при спортивных напряжениях.


Потребность в минералах

Потребность спортсменов в минеральных веществах изучена недостаточно. В настоящее время нормы потребности в минеральных веществах для спортсменов определяются в величинах, установленных для взрослого здорового человека. Однако уже сейчас можно определить некоторые общие направления обеспечения спортсменов минеральными веществами. Особенностями минерального обмена в процессе интенсивной мышечной деятельности являются ацидотические сдвиги различной выраженности, развивающиеся в организме. Ацидотические сдвиги особенно велики при выполнении упражнений максимальной и субмаксимальной интенсивности, а также при тренировка в горных условиях. Возникновение у спортсменов ацидоза неблагоприятно сказывается на состоянии организма, так как при этом в организме происходит накопление свободных кислот, изменяющих нормальную реакцию тканевых соков и снижающих выносливость организма и его устойчивость при больших физических нагрузках. Предупреждение развития ацидотических сдвигов в известной степени может быть осуществлено путем включения в состав пищевого рациона спортсменов продуктов, богатых щелочными компонентами (молоко, овощи и фрукты). В питании спортсменов наиболее выгодным источником щелочных компонентов следует признать овощи, плоды, фрукты и ягоды; соли органических кислот, входящие в их состав, в процессе превращений в организме оставляют значительный запас щелочных эквивалентов, предотвращающих развитие ацидоза. Для обеспечения щелочной ориентации питания спортсмена необходимо систематическое включение достаточно больших количеств фруктов в овощей, удельный вес которых должен составлять 15- 20%. Имеются данные (Н. Н. Яковлев, Л. Г. Лешкович, 1960), что спортивные нагрузки вызывали меньшие биохимические и функциональные сдвиги у тех спортсменов, в питании которых овощи и фрукты составляли 15-20% общей калорийности рациона. По наблюдениям авторов, при меньшем включении в пищевой рацион овощей и фруктов отмечались более резкие биохимические сдвиги и позднее наступало восстановление работоспособности. В ощелачивании организма известную роль может сыграть потребление щелочных минеральных вод (боржоми и др.), однако ощелачивающее действие их ничтожно по сравнению с фруктами, овощами и их соками. Фруктовые и ягодные соки, а также томатный сок являются реальными источниками щелочных компонентов. Занятие спортом сопровождается повышенной потребностью в фосфоре. Обмен фосфорных соединений оказывает влияние на работу скелетных мышц, а также на деятельность сердечной мышцы. Поступление солей фосфорной кислоты играет важную роль в усилении процессов фосфорилирования в мышцах. Ионы фосфорной кислоты способствуют лучшей мобилизации углеводных ресурсов при напряженной физической работе. Кроме того, соли фосфорной кислоты усиливают гликотенолиз в печени. По данным А. Н. Крестовниковой, у спортсменов потребность в фосфоре возрастает в 1 1/2-2 раза. Источником фосфора в питании спортсменов могут служить все продукты животного происхождения: мясо, творог, яйца и др. Поступление достаточных количеств железа неразрывно связано с обеспечением высокого уровня кислородной емкости организма. Включение в пищевой рацион источников железа способствует наиболее полному построению миоглобина, являющегося резервуаром кислорода в мышцах. Имеются данные, что потребность в железе у спортсменов повышается на 20%. Отмечена также повышенная потребность в магнии. Значение магния, помимо его ощелачивающих свойств, заключается в участии образования катализаторов некоторых реакций гликолиза. В связи с большими потерями хлоридов с потом у спортсменов отмечается повышенная потребность в хлористом натрии, суточная норма которого должна быть увеличена в 1 1/2-2 раза. Потребность в некоторых минеральных веществах для спортсменов приведена в табл. 81.

Таблица 81 Потребность в минеральных веществах (в граммах)


Вса­сывание L-аминокислот (но не D) - активный процесс, в результате которого аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь.

Известно пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:

1. нейтральных, короткой боковой цепью (аланин, серии, треонин);

2. нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);

3. с катионными радикалами (лизин, аргинин);

4. с анионными радикалами (глутаминовая и аспарагиновая кислоты);

5. иминокислот (пролин, оксипролин).

Существуют 2 основных механизма переноса аминокислот: симпорт с натрием и γ-глутамильный цикл.

1. Симпорт аминокислот с Na + .

Симпортом с Nа + переносятся аминокислоты из первой и пятой группы, а также метионин.

L-аминокислота поступает в энтероцит путём симпорта с ионом Na +. Далее специфическая транслоказа переносит ами­нокислоту через мембрану в кровь. Обмен ионов натрия меж­ду клетками осуществляется путём первично-активного транс­порта с помощью Na + , К + -АТФ-азы.

Конец работы -

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ

ГОУВПО УГМА Федерального агентства по здравоохранению и социальному развитию... Кафедра биохимии...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

РОЛЬ БЕЛКА В ПИТАНИИ. ПОКАЗАТЕЛИ КАЧЕСТВА ПИЩЕВОГО БЕЛКА
Роль белка в питании: основной источникАК, в первую очередь незаменимых. Богаты белками продукты животного происхож­дения: мясо, рыба, сыр. Продукты растительного происхождения соде

АЗОТИСТЫЙ БАЛАНС. ПРИНЦИПЫ НОРМИРОВАНИЯ БЕЛКА В ПИТАНИИ. БЕЛКОВАЯ НЕДОСТАТОЧНОСТЬ
Азотистый баланс– разница между количеством азота, поступающего с пищей, и количеством выделяемого азота. Азот преимущественно поступает в организм в виде АК (95%), а выделяетс

Нормы белка в питании
· Для здорового взрослого человека минимальное количество белка в пище составляет 30-50 г/сут (при биологической ценности не ниже 70%). Оно поддерживает азотистое равновесие, но не обеспечивает сох

Белковая недостаточность
Продолжитель­ное безбелковое питание вызывает серьёзные нарушения обмена веществ и неизбежно заканчивается гибелью организма. Дефицит в пище даже одной незаменимой АК ведёт к неполно­му усвоению др

ПЕРЕВАРИВАНИЕ БЕЛКОВ В ЖКТ
Переваривание – процесс гидролиза веществ до их ассимилируемых форм. Всасывание – процесс поступления веществ из просвета ЖКТ в кровеносное русло.

ПЕРЕВАРИВАНИЕ БЕЛКОВ В ЖЕЛУДКЕ
Желудок выполняет несколько функций: защитную (обезвреживание пищи: HCl, лизоцим), переваривание (механическая и химическая обработка пищи: HCl, ферменты), всасывание, эндокринную (образование гаст

Состав желудочного сока
Неорганические вещества Кол-во Органические вещества Кол-во Свободная НС1 20 ммоль/л, 0,4-0,5%

Механизм образования соляной кислоты
Согласно карбоангидразной теории, источником Н+ для HCl является Н2СО3, которая об­разуется в обкладочных клетках желудка из СО2 и Н2О под дей

Ферменты желудка
Пепсиноген неактивный фермент, синтезируется в главных клетках, состоит из одной поли­пептидной цепи с молекулярной массой 40 кД. В просвете желудка под действием НС1

Определение кислотности желудочного сока
Кислотность желудочного сока выражается в титрационных единицах (Т.Е.), определяется количеством мл 0,1Н раствора NaOH, пошедшего на титрование 100 мл желудочного сока. Титрование проводят в присут

ПЕРЕВАРИВАНИЕ БЕЛКОВ В КИШЕЧНИКЕ
Функции тонкой и толстой кишок: 1). завершение переваривания всех компонентов пищи; 2). всасывание образовавшихся соединений; 3). удаление непереваренных продуктов (формирование каловых масс и их э

Панкреатический сок
Для пищеварения в поджелудочной железе синтезируется сложный по составу сок, который представляет собой бесцветную опалесцирующую жидкость с величиной рН=7,5-8,8. В сутки выделяется 1,5-2,5 литра с

Специфичность действия протеаз
Трипсин преимущественно гидролизует пеп­тидные связи, образованные карбоксильными группами аргинина и лизина. Химотрипсины наиболее активны в отно

Кишечный сок
Кишечный сок является продуктом деятельности всей слизистой оболочки кишечника и представляет собой неоднородную вязкую жидкость, с величиной рН=7,2-8,6 (с усилением секреции рН повышается). За сут

Защита клеток от действия протеаз
Клетки поджелудочной железы защищены от действия пищеварительных ферментов тем, что: · эти ферменты образуются в клетках поджелудочной железы в неактивной формеи активируются только после

РЕГУЛЯЦИЯ ЖЕЛУДОЧНО-КИШЕЧНОЙ СЕКРЕЦИИ
Натощак секретируется незначительное количество желудочного сока. Регуляция секреции желудочного сока осуществляется в 3 фазы: 1. Мозговая (сложнорефлекторная)

Регуляция поджелудочной секреции
Регуляция секреции поджелудочного сока осуществляется в 3 фазы: 1. Мозговая (сложнорефлекторная) фаза. Осуществляется через комплекс условных и безусловных рефлексов. Вид, запах и в

Регуляция кишечной секреции
Регуляция деятельности желез тонкой кишки осуществляется местными нервно-рефлекторными механизмами, а также гуморальными влияниями и ингредиентами химуса. Механическое раздражение слизистой оболочк

Глутамильный цикл.
γ-глутамильный цикл переносит некоторые нейтральные аминокислоты (фенилаланин, лейцин) и аминокислоты с катион­ными радикалами (лизин) в кишечнике, почках и, по-ви­димому, мозге. В эт

НАРУШЕНИЕ ПЕРЕВАРИВАНИЯ БЕЛКОВ И ТРАНСПОРТА АМИНОКИСЛОТ
Не­переносимость белков пищи (например, моло­ка и яиц) у взрослых людей. В норме у взрослых людей из кишечника кровь попадают только лишенные анти­генных свойств аминокислоты.

ГНИЕНИЕ
Гниение– (putrefacio) процесс расщепления азотсодержащих, главным образом белковых веществ, в результате жизнедеятельности микроорганизмов. В аэробных условиях белковые мо

ЛЕКЦИЯ № 18
Тема: Белки II. Общие пути обмена аминокислот. Биосинтез мочевины. Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.

Физико-химические свойства аминокислот
АК белые кристаллические вещества, хорошо растворимые в воде. Имеют высокую температуру плавления, в твердом состоянии находятся в виде внутренней соли. Многие сладкие на вкус (гли). АК ам

И ЕГО ИСПОЛЬЗОВАНИЕ В ОРГАНИЗМЕ
Большая часть аминокислот организма человека, примерно 15кг, входит в состав белков. Фонд свободных АК организма составляет примерно 35г. Источниками АК в организме являются белки пищи, бе

ТРАНСАМИНИРОВАНИЕ (ПЕРЕАМИНИРОВАНИЕ) АМИНОКИСЛОТ
Трансаминирование - реакция переноса α-аминогруппы с АК на α-кетокислоту, в результате чего образуются новая α-кетокислота и новая АК. Процесс трансаминирования легко обратим, при не

Механизм переаминирования
Вначале, АК передает свою аминогруппу на пиродоксальфосфат. АК при этом превращ

Органоспецифичные аминотрансферазы АЛТ и АСТ
Чаще всего в трансаминировании участвуют АК и кетокислоты, которых много в организме - глу, ала, асп, α-КГ, ПВК и ЩУК. Основным донором аминогруппы служит глу, а кетогруппы - α-КГ.

Прямое дезаминирование АК
Прямое дезаминирование - это дезаминирование, которое происходит в 1 стадию с участием одного фермента. Прямому дезаминированию повергаются глу, гис, сер, тре, цис.

Внутримолекулярное дезаминирование
Внутримолекулярное дезаминирование характерно для гистидина. Реакцию катализирует гистидаза (гистидин-аммиаклиаза). Эта реакция происходит только в печени и коже.

Непрямое дезаминирование в печени
Непрямое дезаминирование АК происходит при участии 2 ферментов: аминотрансферазы и глу-ДГ. Аминогруппы АК в результате трансаминирования переносятся на α-КГ с образованием глутамата, который з

Непрямое дезаминирование в мышцах (и нервной ткани)
В мышечной ткани активность глу-ДГ низка, поэтому при интенсивной физической нагрузке функционирует ещё один путь непрямого дезаминирования с участием цикла ИМФ-АМФ.

Пути обмена безазотистого остатка аминокислот
За сутки у человека распадаются примерно 100г АК. Катаболизм всех АК сводится к образованию шести веществ, вступающих в общий путь катаболизма: ПВК, ацетил-КоА, α-кетоглутарат, сукцинил-КоА, ф

Токсичность аммиака
Аммиак - токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и, прежде всего на ЦНС. Механизм токсического действия амми

Обмен глутамата
В мозге и некоторых других органах может протекать восстановительное аминирование α-кетоглутарата под действием глутаматдегидрогеназы, катализирующей обратимую реакцию.

Обмен глутамина
Основной реакцией связывания аммиака, протекающей во всех тканях организма (основные поставщики мышцы, мозг и печень), является синтез глутамина под действием глутаминсинтетазы:

Обмен аланина
Из мышц и кишечника избыток аминого азота выводится преимущественно в виде аланина. В кишечнике:

ОРНИТИНОВЫЙ ЦИКЛ
Большая часть свободного аммиака, а также аминного азота в составе АК (в основном глутамин, аланин) поступают в печень, где из них синтезируется нетоксичное и хорошо растворимое в воде соединение -

Реакции орнитинового цикла
Предварительно в митохондриях под действием карбамоилфосфатсинтетазы I с затратой 2 АТФ аммиак связывается с СО2 с образованием карбамоилфосфата:

Регенерация аспартата из фумарата
Фумарат, образующийся в орнитиновом цикле, в цитозоле превращается в ЩУК, который переаминируется с аланином или глутаматом с образованием аспартата. Аланин поступает главным образом из мышц и клет

Энергетический баланс орнитинового цикла
На синтез 1 мочевины расходуются 4 макроэргических связи 3 АТФ. Дополнительные затраты энергии связаны с трансмембранным переносом веществ и экскрецией мочевины. Энергозатраты при этом частично ком

ГИПЕРАММОНИЕМИЯ
Нарушение реакций обезвреживания аммиака может вызвать повышение содержания аммиака в крови - гипераммониемию, что оказывает токсическое действие на организм. Причи

Наследственные нарушения орнитинового цикла и их основные проявления
Заболева­ние Дефект фермента Тип наследова­ния Клинические проявления Метаболиты кровь

ДЕКАРБОКСИЛИРОВАНИЕ АМИНОКИСЛОТ И ИХ ПРОИЗВОДНЫХ
Некоторые АК и их производные могут подвергаться декарбоксилированию – отщеплению α-карбоксильной группы. У млекопитающих декарбоксилируются: три, тир, вал, гис, глу, цис, арг, орнитин, SAM, Д

Гистамин
Гистамин образуется в тучных клетках. Секретируется в кровь при повреждении ткани, развитии иммунных и аллергических реакций.

ФОЛИЕВАЯ КИСЛОТА
Значительную роль в обмене ряда АК, синтезе некоторых сложных липидов, нейромедиаторов, гормонов и ряда других веществ играют производные фолиевой кислоты. Фолиевая кислота

Образование одноуглеродных фрагментов, их взаимопревращения
ТГФК принимает от АК одноуглеродные фрагменты: серин и глицин дают метиленовый фрагмент (-СН2-), гистидин – формимино- и формильный фрагменты. В составе ТГФК одноуглеродные фраг

Недостаточность фолиевой кислоты
Гиповитаминоз фолиевой кислоты возникает редко, его вызывает ис­пользование сульфаниламидных препаратов. Сульфаниламиды - структурные аналоги парааминобензойной кислоты, они ингибируют синтез фолие

ОБМЕН СЕРИНА И ГЛИЦИНА
Серин и глицин - заменимые аминокислоты. Синтез серина:

Наследственные нарушения обмена глицина
Известно несколько заболеваний, связанных с нарушениями обмена глицина. В их основе лежит недостаточность ферментов или дефект системы транспорта этой АК. Гиперглицинемия

ЦИСТЕИН
Цистеин – серосодержащая условнозаменимая АК. Синтезируется из незаменимого метионина и заменимого серина. Нарушение синтеза цистеина возникает при гиповитаминозе фоли

ФЕНИЛАЛАНИН
Фенилаланин - незаменимая АК, которая содержится в достаточных количествах в пищевых продуктах. Фенилаланин идет в основном на синтез белков и тирозина.

Фенилкетонурия
В печени здоровых людей небольшая часть фенилаланина (10%) превращается в фениллактат и фенилацетилглутамин. При дефекте фенилаланингидроксилазы этот путь катаболизма фенила

Обмен тирозина в надпочечниках и нервной ткани
В мозговом веществе надпочечников и нервной ткани тирозин метаболизирует по катехоламиновому пути с образованием дофамина, норадреналина и адреналина (только в надпочечниках

Болезнь Паркинсона
Болезнь Паркинсона развивается при снижении активности тирозинмонооксигеназы и ДОФА-декарбоксилазы, что приводит к недостаточности дофамина в чёрной субстанции мозга. Это одно

Обмен тирозина в меланоцитах
В пигментных клетках (меланоцитах) обмен тирозин идет по меланиновому пути. Из тирозина синтезируются пигменты - меланины 2 типов: эумеланины и феомеланины. Эумел

Катаболизм тирозина в печени
Катаболизм тирозина происходит в печени по гомогентизиновому пути (схема).

Тирозинемии
Некоторые нарушения катаболизма тирозина в печени приводят к тирозинемии и тирозинурии. Различают 3 типа тирозинемии. 1.Тирозинемия типа 1 (тирозиноз). Причиной заболе

Использование глутамата
1. Используется в синтезе белков, липидов, углеводов; 2. Ведущая роль в интеграции азотистого обмена. Обеспечивает реакции переаминирования АК: глутамат универсальный донор аминогруппы для

Вса­сывание L-аминокислот (но не D) - активный процесс, в результате которого аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь.

Известно пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:

1. нейтральных, короткой боковой цепью (аланин, серии, треонин);

2. нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);

3. с катионными радикалами (лизин, аргинин);

4. с анионными радикалами (глутаминовая и аспарагиновая кислоты);

5. иминокислот (пролин, оксипролин).

Существуют 2 основных механизма переноса аминокислот: симпорт с натрием и γ-глутамильный цикл.

1. Симпорт аминокислот с Na + .

Симпортом с Nа + переносятся аминокислоты из первой и пятой группы, а также метионин.

L-аминокислота поступает в энтероцит путём симпорта с ионом Na +. Далее специфическая транслоказа переносит ами­нокислоту через мембрану в кровь. Обмен ионов натрия меж­ду клетками осуществляется путём первично-активного транс­порта с помощью Na + , К + -АТФ-азы.

2. γ-Глутамильный цикл.

γ-глутамильный цикл переносит некоторые нейтральные аминокислоты (фенилаланин, лейцин) и аминокислоты с катион­ными радикалами (лизин) в кишечнике, почках и, по-ви­димому, мозге.

В этой системе участвуют 6 ферментов, один из которых находится в клеточной мембране, а остальные - в цитозоле. Мембранно-связанный фермент γ-глутамилтрансфераза (гликопротеин) катализирует перенос γ-глутамильной группы от глутатиона на транспортируемую аминокислоту и последую­щий перенос комплекса в клетку. Амнокислота отщепляется от у-глутамильного остатка под действием фермента у-глутамилциклотрансферазы.

Дипептид цистеинилглицин расщепляется под действием пептидазы на 2 аминокислоты - цистеин и глицин. В результате этих 3 реакций про­исходит перенос одной молекулы аминокислоты в клетку (или внутриклеточную структуру). Сле­дующие 3 реакции обеспечивают регенерацию глутатиона, благодаря чему цикл повторяется многократно. Для транспорта в клетку одной мо­лекулы аминокислоты с участием у-глутамильного цикла затрачиваются 3 молекулы АТФ.




Поступление аминокислот в организм осуществляется двумя путя­ми: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфа­тический проток. Максимальная концентрация аминокислот в крови достигается через 30-50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Аминокислоты при всасывании конкурируют друг с другом за специфические участки связывания. Например, всасывание лейцина (если концентрация его достаточно высока) уменьшает всасывание изолейцина и валина.

Реакции декарбоксилирования аминокислот: образование биогенных аминов, биологическое значение. Синтез, ГАМК, серина, аминоэтанола, холина, гистамина в тучных клетках соединительной ткани, значение биогенных аминов. Реакции дезаминирования: в организме человека, биологическое значение. Пути использования безазотистого остатка аминокислот: (глюконеогенез, ЦТК).

ДЕКАРБОКСИЛИРОВАНИЕ АМИНОКИСЛОТ И ИХ ПРОИЗВОДНЫХ

Некоторые АК и их производные могут подвергаться декарбоксилированию – отщеплению α-карбоксильной группы. У млекопитающих декарбоксилируются: три, тир, вал, гис, глу, цис, арг, орнитин, SAM, ДОФА, 5-окситриптофан и т.д. Реакцию необратимо катализируют декарбоксилазы, которые содержат в активном центре пиридоксальфосфат. Механизм реакции похож на реакцию переаминирования.

Продуктами реакции являются СО 2 и биогенные амины, выполняющие регуляторные функции (гормоны, тканевые гормоны, нейромедиаторы).

Серотонин

Серотонин образуется из три в надпочечниках, ЦНС и тучных клетках.


Серотонин – возбуждающий нейромедиатор средних отделов мозга (проводящих путей) и гормон. Стимулирует сокращение гладкой мускулатуры, вазоконстриктор, регулирует АД, температуру тела, дыхание, антидепрессант.

ГАМК

ГАМК образуется и разрушается в ГАМК-шунте ЦТК в высших отдела мозга. Он имеет очень высокую концентрацию.



ГАМК – тормозной нейромедиатор (повышает проницаемость постсинаптических мембран для К +), повышает дыхательную активность нервной ткани, улучшает кровоснабжение головного мозга.

Гистамин

Гистамин образуется в тучных клетках. Секретируется в кровь при повреждении ткани, развитии иммунных и аллергических реакций.

Гистамин – медиатор воспаления, аллергических реакций, пищеварительный гормон:

1. стимулирует секрецию желудочного сока, слюны;

2. повышает проницаемость капилляров, расширение сосудов, покраснение кожи, вызывает отеки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль);

3. сокращает гладкую мускулатуру легких, вызывает удушье;

4. вызывает аллергическую реакцию;

5. нейромедиатор;

6. медиатор боли.

Дофамин

Дофамин образуется (фен → тир → ДОФА → дофамин) в мозге и мозговом веществе надпочечников.


Дофамин – нейромедиатор среднего отдела мозга.


В желудке всасываются некоторые аминокислоты, немного глюкозы, воды с растворенными в ней минеральными солями и довольно существенно всасывание алкоголя. Основное всасывание продуктов гидролиза белков, жиров и углеводов происходит в тонком кишечнике. Белки всасываются в виде аминокислот, углеводы - в виде моносахаридов, жиры - в виде глицерина и жирных кислот. Всасыванию нерастворимых в воде жирных кислот помогают водорастворимые соли желчных кислот.
Всасывание питательных веществ в толстой кишке незначительно, там всасывается много воды, что необходимо для формирования кала, в небольшом количестве глюкоза, аминокислоты, хлориды, минеральные соли, жирные кислоты и жирорастворимые витамины A, D, Е, К. Вещества из прямой кишки всасываются так же, как и из ротовой полости, т.е. непосредственно в кровь, минуя портальную кровеносную систему.

Белки всасываются в кишечнике после их расщепления до аминокислот. Скорость их всасывания зависит от химической структуры. Аминокислоты при всасывании требуют затрат энергии.

Всасывание аминокислот зависит от нервных и гормональных влияний. Процессу всасывания аминокислот в кишечнике посвящен ряд исследований. В некоторых исследованиях получены данные, согласующиеся с механизмом всасывания путем простой диффузии, однако очевидно, что существует и механизм активного всасывания.

Аминокислоты, являющиеся конечными продуктами пищеварения белков, быстро всасываются через стенку тонкого кишечника и поступают в воротную вену. Точный механизм процесса всасывания аминокислот еще не изучен, однако установлено, что всасывание осуществляется не путем простого диализа. Процесс всасывания сопровождается, по-видимому, определенными реакциями в клетках слизистой оболочки кишечника. Вместе с аминокислотами всасывается и некоторое количество простых пептидов. Иногда, особенно у молодых организмов, происходит всасывание белков без предварительного их расщепления.

Сразу после всасывания аминокислоты и моносахариды, а затем и липиды поступают в печень. В печени некоторые вещества накопляются и откладываются в запас, другие изменяются. Происходит обмен близких по строению химических остатков, входящих в состав тканей печени, на другие группы из веществ, приносимых кровью. Поэтому кровь, поступающая в печень, отличается по составу от крови, выходящей из нее, особенно после еды.

Значительно чаще встречаются наследственные дефекты всасывания аминокислот в почках. Одним из хорошо известных заболеваний считается цистиноз, который рядом авторов отождествляется с синдромом Абдер-гальдена - Фанкони как по клиническим и биохимическим проявлениям, так и по характеру наследственной передачи болезни.

Снижение, по-видимому, связано с нарушением процессов всасывания аминокислот в желудочно-кишечном тракте, ускорением их элиминации из организма, а также нарушением синтеза и распада белка при гиповитаминозе А. Последнее подтверждают и данные протеинограммы крови при гиповитаминозе А, согласующиеся с характером изменения уровня аминоазота.

Основным механизмом поступления аминокислот в энтероцит является Nа+-зависимый активный транспорт. Вместе с тем возможна и диффузия аминокислот по электрохимическому градиенту. Наличием двух механизмов транспорта объясняют тот факт, что D-аминокислоты всасываются быстрее (за счет активного транспорта), чем L-изомеры, поступающие в клетку пассивно, путем диффузии. У взрослых животных диффузия, очевидно, происходит лишь при нарушении механизма активного транспорта. В нормальных же условиях поступление аминокислот в энтероцит обеспечивается механизмами облегченной диффузии и активного транспорта, реализующимися с участием переносчиков. Предполагают наличие различных транспортных систем для нейтральных, основных, N-замещенных и дикарбоновых аминокислот.

Практически единственным видом продуктов гидролиза белка, всасывающихся в кровеносное русло у высших животных и человека, являются аминокислоты. Исключение составляют оксипролиновые пептиды, которые, по-видимому, всасываются путем диффузии. В весьма небольшом количестве через кишечный эпителий способны проникать некоторые мелкие пептиды, например глицилглицин. Кроме того, у новорожденных млекопитающих, когда еще не функционируют механизмы расщепления белка, возможно всасывание интактного белка посредством пиноцитоза. Таким путем в организм новорожденного с молоком матери поступают антитела, обеспечивающие невосприимчивость к инфекциям.

Существует точка зрения, в соответствии с которой олигопептиды, образующиеся в процессе полостного гидролиза, поступают в энтероцит, где и расщепляются до аминокислот под действием внутриклеточных ферментов. В то же время показано, что промежуточные и заключительные этапы расщепления белковых молекул осуществляются не внутриклеточно, а в зоне щеточной каймы энтероцитов с помощью находящихся здесь пептидаз.

В энтероцитах наряду с транспортной системой апикальной мембраны имеется также транспортная система, расположенная в базальной и латеральных мембранах, которая осуществляет выход транспортируемых аминокислот из клетки. Эта система функционирует с участием транспортеров по механизму облегченной диффузии. Предполагают возможность и Nа+-зависимого активного транспорта.
Процесс переваривания и всасывания белков можно представить в следующем виде. В просвете кишки происходит расщепление полипептидов до олигопептидов, ди- и трипептидов и аминокислот. В мембране микроворсинок щеточной каймы - дальнейшее расщепление специфическими пептидазами, поглощение аминокислот и олигопептидов. В цитоплазме - расщепление ди- и олигопептидов цитоплазматическими пептидазами до аминокислот. В базальной мембране - выход аминокислот из клетки в кровь.

Между отдельными аминокислотами и их изомерами существует конкурентная взаимодействие, в результате того, что один и тот же переносчик может транспортировать несколько аминокислот.
В тонком отделе кишечника могут всасываться низкомолекулярные полипептиды и дипептиды. Некоторые белки корма частично всасываются без расщепления. Например, у новорожденных животных без изменений в кишечнике всасываются глобулины молозива, благодаря чему организм получает готовые иммунные тела.

Всасывания углеводов. Углеводы всасываются в основном в кишечнике, хотя немного их уже всасывается в ротовой полости и желудка. Всасываются они в виде моносахаридов - глюкозы, галактозы, фруктозы и маннозы. При избытке в кормах дисахаридов часть их может всасываться без предварительного расщепления до моносахаридов. Различные моносахариды всасываются с неодинаковой скоростью. Быстрее проникает глюкоза и галактоза, скорость всасывания фруктозы меньше в 2 раза, а маннозы - в 6 раз по сравнению с глюкозой.

На доступность аминокислот влияет ряд факторов, связанных главным образом с их неполным перевариванием, что наблюдается при наличии перекрестных связей в молекуле белка в присутствии ингибиторов протеаз, а также при ингибировании пептидами и пептидоподобными соединениями. Максимальная концентрация аминокислот в крови достигается через 30 - 50 мин после приема пищи.



Загрузка...