emou.ru

Связь между атомами. Типы межатомных связей

В настоящее время все виды химической связи делят ковалентную, ионную, донорно-акцепторную, ван-дер-ваальсову, водородную, металлическую.

Ковалентная связь образуется, когда два атома могут «обобщить» электроны:

А. + В. → А:В

Ионная связь образуется, когда "обмен "становится настолько неравными, что электрон отрывается от своего атома А и полностью переходит к атому B , в результате чего образуется пара ионов:

А. + В. → А + :В -

Мы считаем, что ионная связь есть крайний случай такого вида химической связи как ковалентный.

Полярная ковалентная связь

Если нет такого понятия, как "абсолютная ионная "связь, может быть есть полностью ковалентная? Ответ "да". Это случай, когда два ядра притягивают электрон с равным усилием. Это положение гарантируется для гомоядерных двухатомных молекул - молекул, состоящих из двух одинаковых атомов. Таким образом, в Cl 2 , O 2 , H 2 электроны поделены между двумя одинаковыми атомами поровну. В таких молекулах, в центр положительного заряда, в точности совпадает центром отрицательного заряда - по середине между двумя ядрами. Связывающие электроны находятся в пространстве между связываемыми атомами.

Особенностью ковалентной связи является также ее поляризуемость. Если молекула состоит из двух атомов, которые связаны полярной связью, то такая молекула является полярной молекулой, т.е. представляет собой .

Донорно -акцепторная связь

Другой тип химической связи - донорно-акцепторная. Различают обменный и донорно-акцепторный механизм образования связи. Ковалентная связь, образующаяся по донорно-акцепторному механизму (т.е. за счет пары электронов одного из атомов), называется дoнорно-акцeпторной. Так рассмотренный выше пример с LiF -есть пример донорно-акцептороной связи.

А: + В → А:В

Межмолекулярное взаимодействие - взаимодействие молекул между собой, не приводящее к разрыву или образованию новых химических связей. В их основе, как и в основе химической связи, лежат электрические взаимодействия.

Ван-дер-ваальсовы силы

Силы Ван-дер-Ваальса включают все виды межмолекулярного притяжения и отталкивания (взаимодействие молекул между собой). Они получили название в честь Я.Д. Ван-дер-Ваальса , который первым принял во внимание межмолекулярные взаимодействия для объяснения свойств реальных газов и жидкостей.

Основу ван-дер-ваальсовых сил также составляют кулоновские силы взаимодействия между электронами и ядрами одной молекулы и ядрами и электронами другой. На определенном расстоянии между молекулами силы притяжения и отталкивания уравновешивают друг друга, и образуется устойчивая система.

Рис.1 Ван-дер-ваальсовы силы

Ван-дер-ваальсовы силы заметно уступают любому виду химической связи. Например, силы, удерживающие атомы хлора в молекуле хлора почти в десять раз больше, чем силы, связывающие молекулы Cl 2 между собой. Но без этого слабого межмолекулярного притяжения нельзя получить жидкий и твердый хлор.

Водородные связи

Водородсодержащие группы атомов (где атом водорода соединен с атомом фтора, кислорода или азота, реже: хлора, серы или других неметаллов) часто образуют устойчивую химическую связь с электроотрицательными атомами, входящими в состав другой или той же самой молекулы. Такой вид химической связи получил название водородной связи . Это частный случай Ван-дер-ваальсовых сил.

Ковалентные связи H-O, H-F, H-N являются сильно полярными, за счет чего на атоме водорода скапливается избыточный положительный заряд, а на противоположных полюсах - избыточный отрицательный заряд. Между разноименно заряженными полюсами возникают силы электростатического притяжения - водородные связи. Водородный вид химической связи может быть как межмолекулярным, так и внутримолекулярным. Энергия водородной связи примерно в десять раз меньше энергии обычной ковалентной связи, но тем не менее водородные связи играют большую роль во многих физико-химических и биологических процессах. В частности, молекулы ДНК представляют собой двойные спирали, в которых две цепи нуклеотидов связаны между собой водородными связями.

Одним из признаков этого вида химической связи может служить расстояние между атомом водорода и другим атомом, ее образующим. Оно должно быть меньше, чем сумма радиусов этих атомов. Чаще встречаются несимметричные водородные связи, в которых расстояние Н... В больше, чем А-В. Однако в редких случаях (фтороводород, некоторые карбоновые кислоты) водородная связь является симметричной. Наиболее сильные водородные связи образуются с участием атомов фтора. В симметричном ионе - энергия водородной связи равна 155 кДж/моль и сопоставима с энергией другого вида связи - ковалентной связью. Энергия водородная связи между молекулами воды уже заметно меньше (25 кДж/моль).

Рис. 2. Водородная связь между молекулами воды


Как известно, атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, – это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.

Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей.

В периодах наблюдается общая тенденция роста электроотрицательности элементов, а в группах – их падения. Элементы по электроотрицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах.

Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи.

Ионная связь

Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий (Li), натрий (Na), калий (K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.

Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия (NaOH) и сульфате натрия(Na 2 SO 4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).

Ковалентная неполярная связь

При взаимодействии атомов с одинаковой электроотрицательностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H 2 , F 2 , Cl 2 , O 2 , N 2 . Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодействием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.

Металлическая связь

Связь, которая образуется в результате взаимодействия относительно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ – металлов.

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свободные электроны, оторвавшиеся от атома, перемещаются между положительными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристаллической решетки металлов.

Водородная связь

Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H 2 O, NH 3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H 2 O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H 2 O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их “упаковки”.

При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.

Повышение температуры кипения спиртов происходит также вследствие укрупнения их молекул.

Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии вам известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплиментарности.



Единой теории химической связи не существует, условно химическую связь делят на ковалентную (универсальный вид связи), ионную(частный случай ковалентной связи), металлическую и водородную.

Ковалентная связь

Образование ковалентной связи возможно по трем механизмам: обменному, донорно-акцепторному и дативному (Льюиса).

Согласно обменному механизму образование ковалентной связи происходит за счет обобществления общих электронных пар. При этом каждый атом стремится приобрести оболочку инертного газа, т.е. получить завершенный внешний энергетический уровень. Образование химической связи по обменному типу изображают с использованием формул Льюиса, в которых каждый валентный электрон атома изображают точками (рис. 1).

Рис. 1 Образование ковалентной связи в молекуле HCl по обменному механизму

С развитием теории строения атома и квантовой механики образование ковалентной связи представляют, как перекрывание электронных орбиталей (рис. 2).

Рис. 2. Образование ковалентной связи за счет перекрывания электронных облаков

Чем больше перекрывание атомных орбиталей, тем прочнее связь, меньше длина связи и больше ее энергия. Ковалентная связь может образовываться за счет перекрывания разных орбиталей. В результате перекрывания s-s, s-p орбиталей, а также d-d, p-p, d-p орбиталей боковыми лопастями происходит образование – связи. Перпендикулярно линии, связывающей ядра 2-х атомов образуется – связь. Одна – и одна – связь способны образовывать кратную (двойную) ковалентную связь, характерную для органических веществ класса алкенов, алкадиенов и др. Одна – и две – связи образуют кратную (тройную) ковалентную связь, характерную для органических веществ класса алкинов (ацетиленов).

Образование ковалентной связи по донорно-акцепторному механизму рассмотрим на примере катиона аммония:

NH 3 + H + = NH 4 +

7 N 1s 2 2s 2 2p 3

Атом азота имеет свободную неподеленную пару электронов (электроны не участвующие в образовании химических связей внутри молекулы), а катион водорода свободную орбиталь, поэтому они являются донором и акцептором электронов, соответственно.

Дативный механизм образования ковалентной связи рассмотрим на примере молекулы хлора.

17 Cl 1s 2 2s 2 2p 6 3s 2 3p 5

Атом хлора имеет и свободную неподеленную пару электронов и вакантные орбитали, следовательно, может проявлять свойства и донора и акцептора. Поэтому при образовании молекулы хлора, один атом хлора выступает в роли донора, а другой – акцептора.

Главными характеристиками ковалентной связи являются: насыщаемость (насыщенные связи образуются тогда, когда атом присоединяет к себе столько электронов, сколько ему позволяют его валентные возможности; ненасыщенные связи образуются, когда число присоединенных электронов меньше валентных возможностей атома); направленность (эта величина связана с геометрий молекулы и понятием «валентного угла» — угла между связями).

Ионная связь

Соединений с чистой ионной связью не бывает, хотя под этим понимают такое химически связанное состояние атомов, в котором устойчивое электронное окружение атома создается при полном переходе общей электронной плотности к атому более электроотрицательного элемента. Ионная связь возможна только между атомами электроотрицательных и электроположительных элементов, находящихся в состоянии разноименно заряженных ионов – катионов и анионов.

ОПРЕДЕЛЕНИЕ

Ионом называют электрически заряженные частицы, образуемые путем отрыва или присоединения электрона к атому.

При передаче электрона атомы металлов и неметаллов стремятся сформировать вокруг своего ядра устойчивую конфигурацию электронной оболочки. Атом неметалла создает вокруг своего ядра оболочку последующего инертного газа, а атом металла – предыдущего инертного газа (рис. 3).

Рис. 3. Образование ионной связи на примере молекулы хлорида натрия

Молекулы, в которых в чистом виде существует ионная связь встречаются в парообразном состоянии вещества. Ионная связь очень прочная, в связи с этим вещества с этой связью имеют высокую температуру плавления. В отличии от ковалентной для ионной связи не характерны направленность и насыщаемость, поскольку электрическое поле, создаваемое ионами, действует одинаково на все ионы за счет сферической симметрии.

Металлическая связью

Металлическая связь реализуется только в металлах – это взаимодействие, удерживающее атомы металлов в единой решетке. В образовании связи участвуют только валентные электроны атомов металла, принадлежащие всему его объему. В металлах от атомов постоянно отрываются электроны, которые перемещаются по всей массе металла. Атомы металла, лишенные электронов, превращаются в положительно заряженные ионы, которые стремятся принять к себе движущиеся электроны. Этот непрерывный процесс формирует внутри металла так называемый «электронный газ», который прочно связывает между собой все атомы металла (рис. 4).

Металлическая связь прочная, поэтому для металлов характерна высокая температура плавления, а наличие «электронного газа» придают металлам ковкость и пластичность.

Водородная связь

Водородная связь – это специфическое межмолекулярное взаимодействие, т.к. ее возникновение и прочность зависят от химической природы вещества. Она образуется между молекулами, в которых атом водорода связан с атомом, обладающим высокой электроотрицательностью (O, N, S). Возникновение водородной связи зависит от двух причин, во-первых, атом водорода, связанный с электроотрицательным атомом не имеет электронов и может легко внедряться в электронные облака других атомов, а, во-вторых, обладая валентной s-орбиталью, атом водорода способен принимать неподеленную пару электронов электроотрицательного атома и образовывать с ним связь по донорно акцепторному механизму.

3.3.1 Ковалентная связь – это двухцентровая двухэлектронная связь, образующаяся за счёт перекрывания электронных облаков, несущих неспаренные электроны с антипараллельными спинами. Как правило образуется между атомами одного химического элемента.

Количественно она характеризуется валентностью. Валентность элемента – это его способность образовывать определенное число химических связей за счёт свободных электронов, находящихся атомной валентной зоне.

Ковалентную связь образует только пара электронов, находящаяся между атомами. Она называется поделенной парой. Остальные пары электронов называют неподеленными парами. Они заполняют оболочки и не принимают участие в связывании. Связь между атомами может осуществляться не только одной, но и двумя и даже тремя поделенными парами. Такие связи называются двойными и тройными - кратными связями.

3.3.1.1 Ковалентная неполярная связь. Связь, осуществляемая за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам, называется ковалентной неполярной. Она возникает между атомами с практически равной электроотрицательностью (0,4 > ΔЭО > 0) и, следовательно, равномерным распределением электронной плотности между ядрами атомов у гомоядерных молекул. Например, Н 2 , О 2 , N 2 , Cl 2 и т. д. Дипольный момент таких связей равен нулю. Связь СН в предельных углеводородах (например, в СН 4) считается практически неполярной, т.к. Δ ЭО = 2,5 (С) - 2,1 (Н) = 0,4.

3.3.1.2 Ковалентная полярная связь. Если молекула образована двумя разными атомами, то зона перекрывания электронных облаков (орбиталей) смещается в сторону одного из атомов, и такая связь называется полярной . При такой связи вероятность нахождения электронов возле ядра одного из атомов выше. Например, НCl, H 2 S, PH 3 .

Полярная (несимметричная) ковалентная связь - связь между атомами с различной электроотрицательностью (2 > ΔЭО > 0.4) и несимметричным распределением общей электронной пары. Как правило, она образуется между двумя неметаллами.

Электронная плотность такой связи смещена в сторону более электроотрицательного атома, что приводит к появлению на нем частичного отрицательного заряда (дельта минус), а на менее электроотрицательном атоме - частичного положительного заряда (дельта плюс)

C   Cl   C   O   C  N   O  H   C  Mg  .

Направление смещения электронов обозначается также стрелкой:

CCl, CО, CN, ОН, CMg.

Чем больше различие в электроотрицательности связываемых атомов, тем выше полярность связи и больше ее дипольный момент. Между противоположными по знаку частичными зарядами действуют дополнительные силы притяжения. Поэтому, чем полярнее связь, тем она прочнее.

Кроме поляризуемости ковалентная связь обладает свойством насыщаемости – способностью атома образовывать столько ковалентных связей, сколько у него имеется энергетически доступных атомных орбиталей. Третьим свойством ковалентной связи является её направленность.

3.3.2 Ионная связь. Движущей силой ее образования является все то же стремление атомов к октетной оболочке. Но в ряде случаев такая “октетная” оболочка может возникнуть только при передаче электронов от одного атома к другому. Поэтому, как правило, ионная связь образуется между металлом и неметаллом.

Рассмотрим в качестве примера реакцию между атомами натрия (3s 1) и фтора (2s 2 3s 5). Разница электроотрицательности в соединении NaF

ЭО = 4,0 - 0,93 = 3,07

Натрий, отдав фтору свой 3s 1 -электрон, становится ионом Na + и остается с заполненной 2s 2 2p 6 оболочкой, что отвечает электронной конфигурации атома неона. Точно такую же электронную конфигурацию приобретает фтор, приняв один электрон, отданный натрием. В результате возникают силы электро-статического притяжения между противоположно заряженными ионами.

Ионная связь – крайний случай полярной ковалентной связи, основанная на электростатическом притяжении ионов. Такая связь возникает при большой разнице в электроотрицательностях связываемых атомов (ЭО > 2), когда менее электроотрицательный атом почти полностью отдает свои валентные электроны и превращается в катион, а другой, более электроотрицательный атом, эти электроны присоединяет и становится анионом. Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщености. В силу этого иoннaя связь не имеет пространственной направленности и насыщаемости , так как каждый ион связан с определенным числом противоионов (координационное число иона). Поэтому ионно-связанные соединения не имеют молекулярного строения и представляют собой твердые вещества, образующие ионные кристаллические решетки, с высокими температурами плавления и кипения, они высокополярны, часто солеобразны, в водных растворах электропроводны. Например, MgS, NaCl, А 2 O 3 . Соединений с чисто ионными связями практически не существует, поскольку всегда остаётся некоторая доля ковалентности в силу того, что полного перехода одного электрона к другому атому не наблюдается; в самых «ионных» веществах доля ионности связи не превышает 90 %. Например, в NaF поляризация связи составляет около 80 %.

В органических соединениях ионные связи встречаются довольно редко, т.к. атом углерода не склонен ни терять, ни приобретать электроны с образованием ионов.

Валентность элементов в соединениях с ионными связями очень часто характеризуют степенью окисления , которая, в свою очередь, соответствует величине заряда иона элемента в данном соединении.

Степень окисления - это условный заряд, который приобретает атом в результате перераспределения электронной плотности. Количественно она характеризуется числом смещённых электронов от менее электроотри-цательного элемента к более электроотрицательному. Положительно заряженный ион образуется из того элемента, который отдал свои электроны, а отрицательный ион - из элемента, который эти электроны принял.

Элемент, находящийся в высшей степени окисления (максимально положительной), уже отдал все свои валентные электроны, находящиеся в АВЗ. А поскольку их количество определяется номером группы, в которой стоит элемент, то высшая степень окисления для большинства элементов и будет равна номеру группы . Что касается низшей степени окисления (максимально отрицательной), то она появляется при формировании восьмиэлектронной оболочки, то есть в том случае, когда АВЗ заполняется полностью. Для неметаллов она рассчитывается по формуле № группы – 8 . Для металлов равна нулю , поскольку они электроны принимать не могут.

Например, АВЗ серы имеет вид: 3s 2 3р 4 . Если атом отдаст все электроны (шесть), то приобретёт высшую степень окисления +6 , равную номеру группы VI , если примет два, необходимые для завершения устойчивой оболочки, то приобретёт низшую степень окисления –2 , равную № группы – 8 = 6 – 8= –2.

3.3.3 Металлическая связь. Большинство металлов обладает рядом свойств, имеющих общий характер и отличающихся от свойств других веществ. Такими свойствами являются сравнительно высокие температуры плавления, способность к отражению света, высокая тепло– и электропроводность. Эти особенности объясняются существованием в металлах особого вида взаимодействия металлической связи.

В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов, которые достаточно слабо связаны со своими ядрами и могут легко отрываться от них. В результате этого в кристаллической решетке металла появляются положительно заряженные ионы, локализованные в определенных положениях кристаллической решетки, и большое количество делокализованных (свободных) электронов, сравнительно свободно перемещающихся в поле положительных центров и осуществляющих связь между всеми атомами металла за счёт электростатического притяжения.

В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве. Силы связи в металлах не локализованы и не направлены, а свободные электроны, образующие «электронный газ», обусловливают высокую тепло- и электропроводность. Поэтому в этом случае невозможно говорить о направленности связей, так как валентные электроны распределены по кристаллу почти равномерно. Именно этим и объясняется, например, пластичность металлов, т. е. возможность смещения ионов и атомов в любом направлении

3.3.4 Донорно-акцепторная связь. Помимо механизма образования ковалентной связи, согласно которому общая электронная пара возникает при взаимодействии двух электронов, существует также особый донорно-акцепторный механизм . Он заключается в том, что ковалентная связь образуется в результате перехода уже существующей (неподелённой) электронной пары донора (поставщика электронов) в общее пользование донора и акцептора (поставщика свободной атомной орбитали).

После образования она ничем не отличается от ковалентной. Донорно-акцепторный механизм хорошо иллюстрируется схемой образования иона аммония (рисунок 9) (звездочками обозначены электроны внешнего уровня атома азота):

Рисунок 9- Схема образования иона аммония

Электронная формула АВЗ атома азота 2s 2 2р 3 , то есть он имеет три неспаренных электрона, которые вступают в ковалентную связь с тремя атомами водорода (1s 1), каждый из которых имеет один валентный электрон. При этом образуется молекула аммиака NH 3, в которой сохраняется неподелённая электронная пара азота. Если к этой молекуле подойдёт протон водорода (1s 0), не имеющий электронов, то азот передаст свою пару электронов (донор) на эту атомную орбиталь водорода (акцептор), в результате чего образуется ион аммония. В нём каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донорно-акцепторному механизму. Важно отметить, что связи Н-N, образованные по различным механизмам, никаких различий в свойствах не имеют. Указанное явление обусловлено тем, что в момент образования связи орбитали 2s– и 2р– электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали.

В качестве доноров обычно выступают атомы с большим количеством электронов, но имеющие небольшое число неспаренных электронов. Для элементов II периода такая возможность кроме атома азота имеется у кислорода (две неподеленные пары) и у фтора (три неподеленные пары). Например, ион водорода Н + в водных растворах никогда не бывает в свободном состоянии, так как из молекул воды Н 2 О и иона Н + всегда образуется ион гидроксония Н 3 О + Ион гидроксония присутствует во всех водных растворах, хотя для простоты в написании сохраняется символ H + .

3.3.5 Водородная связь. Атом водорода, связанный с сильно электроотрицательным элементом (азотом, кислородом, фтором и др.), который «стягивает» на себя общую электронную пару, испытывает недостаток электронов и приобретает эффективный положительный заряд. Поэтому он способен взаимодействовать с неподеленной парой электронов другого электроотрицательного атома (который приобретает эффективный отрицательный заряд) этой же (внутримолекулярная связь) или другой молекулы (межмолекулярная связь). В результате возникает водородная связь , которая графически обозначается точками:

Эта связь значительно слабее других химических связей (энергия ее образования 10 40 кДж/моль) и в основном имеет частично электростатический, частично донорно-акцепторный характер.

Исключительно важную роль водородная связь играет в биологических макромолекулах, таких неорганических соединениях как H 2 O, H 2 F 2 , NH 3 . Например, связи О-Н в Н 2 О имеют заметный полярный характер с избытком отрицательного заряда – на атоме кислорода. Атом водорода, наоборот, приобретает небольшой положительный заряд  + и может взаимодействовать с неподеленными парами электронов атома кислорода соседней молекулы воды.

Взаимодействие между молекулами воды оказывается достаточно сильным, таким, что даже в парах воды присутствуют димеры и тримеры состава (H 2 O) 2 , (Н 2 O) 3 и т. д. В растворах же могут возникать длинные цепи ассоциатов такого вида:

поскольку атом кислорода имеет две неподеленные пары электронов.

Наличие водородных связей объясняет высокие температуры кипения воды, спиртов, карбоновых кислот. За счет водородных связей вода характеризуется столь высокими по сравнению с H 2 Э (Э = S, Se, Te) температурами плавления и кипения. Если бы водородные связи отсутствовали, то вода плавилась бы при –100 °С, а кипела при –80 °С. Типичные случаи ассоциации наблюдаются для спиртов и органических кислот.

Водородные связи могут возникать как между различными молекулами, так и внутри молекулы, если в этой молекуле имеются группы с донорной и акцепторной способностями. Например, именно внутримолекулярные водородные связи играют основную роль в образовании пептидных цепей, которые определяют строение белков. Н-связи влияют на физические и химические свойства вещества.

Связи типа водородных не образуют атомы других элементов , поскольку силы электростатического притяжения разноименных концов диполей полярных связей (О-Н, N-H и т.п.) довольно слабы и действуют лишь на малых расстояниях. Водород, обладая наименьшим атомным радиусом, позволяет сблизиться таким диполям настолько, что силы притяжения становятся заметными. Никакой другой элемент с большим атомным радиусом не способен к образованию подобных связей.

3.3.6 Силы межмолекулярного взаимодействия (силы Ван-дер-Ваальса). В 1873 г. голландский ученый И. Ван-дер-Ваальс предположил, что существуют силы, обуславливающие притяжение между молекулами. Эти силы позднее получили название ван-дер-ваальсовых сил наиболее универсальный вид межмолекулярной связи. Энергия ван-дер-ваальсовой связи меньше водородной и составляет 2–20 кДж/∙моль.

В зависимости от способа возникновения силы делятся на:

1) ориентационные (диполь-диполь или ион-диполь) - возникают между полярными молекулами или между ионами и полярными молекулами. При сближении полярных молекул они ориентируются таким образом, чтобы положительная сторона одного диполя была ориентирована к отрицательной стороне другого диполя (рисунок 10).

Рисунок 10 - Ориентационное взаимодействие

2) индукционные (диполь – индуцированный диполь или ион– индуцированный диполь) - возникают между полярными молекулами или ионами и неполярными молекулами, но способными к поляризации. Диполи могут воздействовать на неполярные молекулы, превращая их в индицированные (наведенные) диполи. (рисунок 11).

Рисунок 11 - Индукционное взаимодействие

3) дисперсионные (индуцированный диполь – индуцированный диполь) - возникают между неполярными молекулами, способными к поляризации. В любой молекуле или атоме благородного газа возникают флуктуации электрической плотности, в результате чего появляются мгновенные диполи, которые в свою очередь индуцируют мгновенные диполи у соседних молекул. Движение мгновенных диполей становится согласованным, их появление и распад происходит синхронно. В результате взаимодействия мгновенных диполей энергия системы понижается (рисунок 12).

Рисунок 12 - Дисперсионное взаимодействие

Для облегчения понимания межатомного взаимодействия мы будем рассматривать типы химической связи в несколько упрощенном виде, а именно, рассмотрим: а) гомеополярную, или ковалентную связь, б) гетерополярную, или ионную связь, в) металлическую связь и г) поляризационную связь, или связь Ван-дер-Ваальса.

Объединение атомов в молекулы вещества, а также объединение атомов или ионов в твердое тело происходит под действием химических связей. Объединение молекул в вещество, находящееся в жидком или газообразном состоянии осуществляется под действием сил межмолекулярного взаимодействия, называемыми силами Ван-дер-Ваальса. Природа химических и молекулярных связей единая – электрическая. Различают несколько типов химической связи, основные из них – это ковалентная и ионная.

Ковалентная связь осуществляется за счет образования одной или нескольких общих пар электронов, ранее принадлежавших разным атомам. Ковалентная связь может быть одинарной (водород, хлор) или многократной (например, азот – 3). Ковалентная связь образуется между атомами одного или нескольких химических элементов с близкими ионизационными потенциалами. В чистом виде ковалентная связь реализуется при взаимодействии элементов с наполовину заполненными электронными оболочками.

Рассмотрим схематическое строение атома и молекулы водорода, рис.1. Электроны при движении по орбитам чаще находятся между ядрами, что способствует сближению атомов. Радиус атома водорода равен 0,53 ангстрема, а расстояния между ядрами атомов в молекуле водорода равняется всего лишь 0,74 ангстрема.

Появление между положительно заряженными ионами пары отрицательно заряженных электронов приводит к тому, что оба иона притягиваются к обобществленным электронам и, тем самым, притягиваются друг к другу. Каждый атом взаимодействует с ограниченным числом соседей, причем число соседей равно числу валентных электронов атома. Следовательно, ковалентная связь насыщенна. Кроме того, атом взаимодействует только с теми соседями, с которыми он обменялся электронами, то есть ковалентная связь направлена.

Отношение размера положительно заряженного ядра к размеру валентной электронной оболочки чрезвычайно мало, поэтому при анализе силы притяжения можно считать, что взаимодействуют точечные заряды, то есть сила притяжения описывается простейшим видом кулоновского закона: сила притяжения обратно пропорциональна квадрату расстояния между зарядами. При сближении атомов начинается взаимное отталкивание внутренних электронных оболочек, и отталкивание атомов описывается более сложным законом: сила отталкивания обратно пропорциональна расстоянию между атомами в степени n, где n >2.

Увеличение порядкового номера элемента ведет к росту количества электронных оболочек, экранирующих взаимодействие положительно заряженных ядер с валентными электронами. Поэтому снижается сила взаимного притяжения и уменьшается глубина потенциальной ямы. В результате, с ростом порядкового номера элемента падает температура плавления, растет коэффициент теплового расширения, уменьшается модуль упругости.

Если молекула состоит из атомов одного и того же химического элемента, то в ней центры расположения положительных и отрицательных зарядов совпадают. Собственный электрический дипольный момент μ такой молекулы равен нулю. Диэлектрик, образованный такими неполярными молекулами также является неполярным.

Если молекула состоит из атомов различных химических элементов, то электронная пара сместится в сторону одного из атомов, обладающего большей электроотрицательностью . В результате произойдет поляризация молекулы. Полярной или дипольной станет и сама молекула. Электрический дипольный момент μ такой молекулы будет равен

μ = q * l , Кл*м

где q – абсолютное значение заряда диполя, l – плечо диполя, расстояние между центрами разноименных зарядов. Дипольный момент часто измеряют в дебаях(D). 1D = 3.33∙10 -30 Кл∙м. Молекула воды является полярной, так как электронные пары между кислородом и водородом смещены в сторону атома кислорода (рис. 2).

При наличии полярных ковалентных связей могут образовываться и неполярные молекулы, если дипольные моменты этих связей уравновешивают друг друга. Такое явление характерно для сложных органических молекул. Например, полиэтилен, трансформаторное масло, парафин являются неполярными веществами, хотя связь «углерод-водород» является полярной.

Ионная связь возникает между атомами, имеющими очень большую разность электроотрицательности. В этом случае электронная пара настолько сильно смещается в сторону одного из атомов, что тот фактически становится отрицательным ионом. Таким образом, ионная связь образуется за счет перехода электрона от одного атома молекулы к другому. Типичный пример такой связи – поваренная соль:

NaCl = Na+ + Cl-.

Границ между полярной ковалентной и ионной связью весьма условна, принципиального различия в механизме образования этих связей нет. Но эти связи сильно отличаются между собой по величине энергии, которую нужно затратить на разрыв такой связи.

Ионная связь образуется при взаимодействии атомов с малым количеством валентных электронов и атомов с большим количеством электронов на валентных оболочках. При этом наружные электроны атомов с низкими потенциалами ионизации переходят на валентные оболочки атомов с высокими ионизационными потенциалами. В результате образуются положительно и отрицательно заряженные ионы, взаимно притягивающиеся электростатическими силами. Ионная связь ненасыщенна, поскольку каждый из отрицательно заряженных ионов притягивает к себе положительно заряженные, а каждый из положительно заряженных ионов притягивает к себе все отрицательно заряженные. Однако ионная связь направлена, поскольку ион притягивает к себе разноименно заряженные ионы и отталкивает одноименно заряженные.

Уменьшение размера иона и увеличение его заряда ведет к росту энергии связи, а следовательно, к росту температуру плавления материала, уменьшению коэффициента теплового расширения и к увеличению модуля упругости.

Металлическая связь образуется между атомами одного или нескольких химических элементов, у которых валентные электронные оболочки застроены меньше чем на половину. Поскольку энергия иона минимальна при полностью заполненной внешней оболочке, атомы отдают внешние валентные электроны и превращаются в положительно заряженные ионы, между которыми находятся свободные электроны (электронный газ).

Каждый из положительно заряженных ионов притягивается к свободным электронам, и, тем самым, ионы притягиваются друг к другу. Металлическая связь ненаправлена и ненасыщена, и число ближайших соседей у иона определяется в основном геометрическим и энергетическими факторами. Следовательно, кристаллические решетки металлов упакованы плотно. Под действием электрического поля не связанные с ионами электроны перемещаются, то есть металлы обладают высокой электропроводностью. Свободные электроны могут легко ускоряться и замедляться, то есть менять свою кинетическую энергию. Вследствие этого металлические материалы поглощают кванты электромагнитного поля любой энергии, то есть металлы непрозрачны для радио- и световых волн в широком диапазоне частот. Поглотив квант электромагнитного поля, свободный электрон возбуждается, и, переходя в стационарное состояние, испускает аналогичный квант. Иначе говоря, металлические материалы отражают радио- и световые волны.

Поляризационная связь, или связь Ван-дер-Ваальса. Образуется при сближении молекул или атомов инертных газов. Рассмотрим возникновение поляризационной связи на примере инертных атомов.

У одиночного атома электронная оболочка симметрична. При сближении двух атомов их электронные оболочки электрически взаимодействуют и деформируются (см. рис. 6). В итоге атомы превращаются в диполи, которые взаимно притягиваются. Чем больше порядковый номер атома, тем больше у него электронных оболочек, а следовательно, связь валентных электронов с ядром ослабевает, и деформировать ее становится легче. Следовательно, возрастает дипольный момент атома и увеличивается энергия связи между атомами. Поэтому температура кипения тяжелых инертных газов заметно выше температуры кипения легких газов.

Аналогичные процессы происходят и при сближении электрически нейтральных молекул. Причем чем выше молекулярный вес, тем больший дипольный момент молекул и выше энергия связи. Поэтому вещества с низким молекулярным весом при комнатной температуре являются газами, вещества с большим молекулярным весом - жидкостями, а вещества с еще большим молекулярным весом - твердыми телами.

Важно иметь в виду, что в одном и том же материале одновременно могут реализовываться несколько типов химических связей. Так, внутри молекулы полиэтилена связь ковалентная, а между молекулами поляризационная. В алмазе атомы углерода связаны ковалентной связью, а у графита три электрона образуют ковалентную связь, один электрон идет на образование металлической связи, и образующиеся плоские молекулы связаны поляризационной связью.

В ряде случаев наблюдается изменение типа связи при изменении внешних условий. Так, олово является элементом четвертой группы, и в нем должна реализовываться ковалентная связь, но у олова пять электронных оболочек, и валентные электроны слабо связаны с ядром. Поэтому при термическом возбуждении электроны отрываются от атомов, и связь становится металлической. До температуры 13*С межатомная связь в олове ковалентная, и он является типичным полупроводником  «серое» олово. Выше 13*С связь становится металлической, и олово ведет себя как типичный металл – «белое» олово. Важно отметить, что превращение белого олова в серое олово не может произойти строго при 13*С. Это вызвано существенным различием в плотности упаковки атомов. При перестройке кристаллических решеток в материале появляются упругие напряжения, которые повышают энергию системы. Поэтому превращение начинается при существенном переохлаждении. Упругие напряжения, возникающие при превращении, разрушают материал, поэтому серое олово существует в виде порошка. Превращение белого олова в серое было причиной гибели экспедиции Роберта Скотта. Поскольку канистры с горючим были пропаяны оловом, то при охлаждении белое олово превратилось в серое и горючее вытекло.



Загрузка...