emou.ru

Линейная независимость векторов онлайн. Линейная зависимость и линейная независимость системы векторов. Определение линейной независимости системы векторов

В данной статье мы расскажем:

  • что такое коллинеарные векторы;
  • какие существуют условия коллинеарности векторов;
  • какие существуют свойства коллинеарных векторов;
  • что такое линейная зависимость коллинеарных векторов.
Определение 1

Коллинеарные векторы - это векторы, которые являются параллелями одной прямой или лежат на одной прямой.

Пример 1

Условия коллинеарности векторов

Два векторы являются коллинеарными, если выполняется любое из следующих условий:

  • условие 1 . Векторы a и b коллинеарны при наличии такого числа λ , что a = λ b ;
  • условие 2 . Векторы a и b коллинеарны при равном отношении координат:

a = (a 1 ; a 2) , b = (b 1 ; b 2) ⇒ a ∥ b ⇔ a 1 b 1 = a 2 b 2

  • условие 3 . Векторы a и b коллинеарны при условии равенства векторного произведения и нулевого вектора:

a ∥ b ⇔ a , b = 0

Замечание 1

Условие 2 неприменимо, если одна из координат вектора равна нулю.

Замечание 2

Условие 3 применимо только к тем векторам, которые заданы в пространстве.

Примеры задач на исследование коллинеарности векторов

Пример 1

Исследуем векторы а = (1 ; 3) и b = (2 ; 1) на коллинеарность.

Как решить?

В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:

Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.

Ответ : a | | b

Пример 2

Какое значение m вектора a = (1 ; 2) и b = (- 1 ; m) необходимо для коллинеарности векторов?

Как решить?

Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:

Отсюда видно, что m = - 2 .

Ответ: m = - 2 .

Критерии линейной зависимости и линейной независимости систем векторов

Теорема

Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.

Доказательство

Пусть система e 1 , e 2 , . . . , e n является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:

a 1 e 1 + a 2 e 2 + . . . + a n e n = 0

в которой хотя бы один из коэффициентов комбинации не равен нулю.

Пусть a k ≠ 0 k ∈ 1 , 2 , . . . , n .

Делим обе части равенства на ненулевой коэффициент:

a k - 1 (a k - 1 a 1) e 1 + (a k - 1 a k) e k + . . . + (a k - 1 a n) e n = 0

Обозначим:

A k - 1 a m , где m ∈ 1 , 2 , . . . , k - 1 , k + 1 , n

В таком случае:

β 1 e 1 + . . . + β k - 1 e k - 1 + β k + 1 e k + 1 + . . . + β n e n = 0

или e k = (- β 1) e 1 + . . . + (- β k - 1) e k - 1 + (- β k + 1) e k + 1 + . . . + (- β n) e n

Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).

Достаточность

Пусть один из векторов можно линейно выразить через все остальные векторы системы:

e k = γ 1 e 1 + . . . + γ k - 1 e k - 1 + γ k + 1 e k + 1 + . . . + γ n e n

Переносим вектор e k в правую часть этого равенства:

0 = γ 1 e 1 + . . . + γ k - 1 e k - 1 - e k + γ k + 1 e k + 1 + . . . + γ n e n

Поскольку коэффициент вектора e k равен - 1 ≠ 0 , у нас получается нетривиальное представление нуля системой векторов e 1 , e 2 , . . . , e n , а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).

Следствие:

  • Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
  • Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.

Свойства линейно зависимых векторов

  1. Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора - коллинеарны. Два коллинеарных вектора - линейно зависимы.
  2. Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора - компланарны. (3 компланарных вектора - линейно зависимы).
  3. Для n-мерных векторов выполняется условие: n + 1 вектор всегда линейно зависимы.

Примеры решения задач на линейную зависимость или линейную независимость векторов

Пример 3

Проверим векторы a = 3 , 4 , 5 , b = - 3 , 0 , 5 , c = 4 , 4 , 4 , d = 3 , 4 , 0 на линейную независимость.

Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.

Пример 4

Проверим векторы a = 1 , 1 , 1 , b = 1 , 2 , 0 , c = 0 , - 1 , 1 на линейную независимость.

Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:

x 1 a + x 2 b + x 3 c 1 = 0

Записываем векторное уравнение в виде линейного:

x 1 + x 2 = 0 x 1 + 2 x 2 - x 3 = 0 x 1 + x 3 = 0

Решаем эту систему при помощи метода Гаусса:

1 1 0 | 0 1 2 - 1 | 0 1 0 1 | 0 ~

Из 2-ой строки вычитаем 1-ю, из 3-ей - 1-ю:

~ 1 1 0 | 0 1 - 1 2 - 1 - 1 - 0 | 0 - 0 1 - 1 0 - 1 1 - 0 | 0 - 0 ~ 1 1 0 | 0 0 1 - 1 | 0 0 - 1 1 | 0 ~

Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:

~ 1 - 0 1 - 1 0 - (- 1) | 0 - 0 0 1 - 1 | 0 0 + 0 - 1 + 1 1 + (- 1) | 0 + 0 ~ 0 1 0 | 1 0 1 - 1 | 0 0 0 0 | 0

Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x 1 , x 2 , x 3 , при которых линейная комбинация a , b , c равняется нулевому вектору. Следовательно, векторы a , b , c являются линейно зависимыми. ​​​​​​​

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение 1. Система векторов называется линейно зависимой, если один из векторов системы можно представить в виде линейной комбинации остальных векторов системы, и линейно независимой - в противном случае.

Определение 1´. Система векторов называется линейно зависимой, если найдутся числа с 1 , с 2 , …, с k , не все равные нулю, такие, что линейная комбинация векторов с данными коэффициентами равна нулевому вектору: = , в противном случае система называется линейно независимой.

Покажем, что эти определения эквивалентны.

Пусть выполняется определение 1, т.е. один из векторов системы равен линейной комбинации остальных:

Линейная комбинация системы векторов равна нулевому вектору, причем не все коэффициенты этой комбинации равны нулю, т.е. выполняется определение 1´.

Пусть выполняется определение 1´. Линейная комбинация системы векторов равна , причем не все коэффициенты комбинации равны нулю, например, коэффициенты при векторе .

Один из векторов системы мы представили в виде линейной комбинации остальных, т.е. выполняется определение 1.

Определение 2. Единичным вектором, или ортом, называется n-мерный вектор , у которого i -я координата равна единице, а остальные - нулевые.

. (1, 0, 0, …, 0),

(0, 1, 0, …, 0),

(0, 0, 0, …, 1).

Теорема 1. Различные единичные векторы n -мерного пространства линейно независимы.

Доказательство. Пусть линейная комбинация этих векторов с произвольными коэффициентами равна нулевому вектору.

Из этого равенства следует, что все коэффициенты равны нулю. Получили противоречие.

Каждый вектор n -мерного пространства ā (а 1 , а 2 , ..., а n ) может быть представлен в виде линейной комбинации единичных векторов с коэффициентами, равными координатам вектора

Теорема 2. Если системы векторов содержит нулевой вектор, то она линейно зависима.

Доказательство. Пусть дана система векторов и один из векторов является нулевым, например = . Тогда с векторами данной системы можно составить линейную комбинацию, равную нулевому вектору, причем не все коэффициенты будут нулевыми:

Следовательно, система линейно зависима.

Теорема 3. Если некоторая подсистема системы векторов линейно зависима, то и вся система линейно зависима.

Доказательство. Дана система векторов . Предположим, что система линейно зависима, т.е. найдутся числа с 1 , с 2 , …, с r , не все равные нулю, такие, что = . Тогда

Получилось, что линейная комбинация векторов всей системы равна , причем не все коэффициенты этой комбинации равны нулю. Следовательно, система векторов линейно зависима.

Следствие. Если система векторов линейно независима, то и любая ее подсистема также линейно независима.

Доказательство.

Предположим противное, т.е. некоторая подсистема линейно зависима. Из теоремы следует, что вся система линейно зависима. Мы пришли к противоречию.

Теорема 4 (теорема Штейница). Если каждый из векторов является линейной комбинацией векторов и m >n , то система векторов линейно зависима.

Следствие. В любой системе n -мерных векторов не может быть больше чем n линейно независимых.

Доказательство. Каждый n -мерный вектор выражается в виде линейной комбинации n единичных векторов. Поэтому, если система содержит m векторов и m >n , то, по теореме, данная система линейно зависима.

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Р е ш е н и е. Ищем общее решение системы уравнений

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гаусса. Для этого запишем эту однородную систему по координатам:

Матрица системы

Разрешенная система имеет вид: (r A = 2, n = 3). Система совместна и неопределена. Ее общее решение (x 2 – свободная переменная): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наличие ненулевого частного решения, например, , говорит о том, векторы a 1 , a 2 , a 3 линейно зависимы.

Пример 2.

Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Р е ш е н и е. Рассмотрим однородную систему уравнений a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

или в развернутом виде (по координатам)

Система однородна. Если она невырождена, то она имеет единственное решение. В случае однородной системы – нулевое (тривиальное) решение. Значит, в этом случае система векторов независима. Если же система вырождена, то она имеет ненулевые решения и, следовательно, она зависима.

Проверяем систему на вырожденность:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невырождена и, т.о., векторы a 1 , a 2 , a 3 линейно независимы.

Задания. Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Доказать, что система векторов будет линейно зависимой, если она содержит:

а) два равных вектора;

б) два пропорциональных вектора.

Определение 1 . Линейной комбинацией векторовназывается сумма произведений этих векторов на скаляры
:

Определение 2 . Система векторов
называется линейно зависимой системой, если линейная комбинация их (2.8) обращается в нуль:

причем среди чисел
существует хотя бы одно, отличное от нуля.

Определение 3 . Векторы
называются линейно независимыми, если их линейная комбинация (2.8) обращается в нуль лишь в случае, когда все числа.

Из этих определений можно получить следующие следствия.

Следствие 1 . В линейно зависимой системе векторов хотя бы один вектор может быть выражен как линейная комбинация остальных.

Доказательство . Пусть выполнено (2.9) и пусть для определенности, коэффициент
. Имеем тогда:
. Заметим, что справедливо и обратное утверждение.

Следствие 2. Если система векторов
содержит нулевой вектор, то эта система (обязательно) линейно зависима – доказательство очевидно.

Следствие 3 . Если средиn векторов
какие либоk (
) векторов линейно зависимы, то и всеn векторов линейно зависимы (опустим доказательство).

2 0 . Линейные комбинации двух, трех и четырех векторов . Рассмотрим вопросы линейной зависимости и независимости векторов на прямой, плоскости и в пространстве. Приведем соответствующие теоремы.

Теорема 1 . Для того чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Необходимость . Пусть векторыилинейно зависимы. Это означает, что их линейная комбинация
=0 и (ради определенности)
. Отсюда следует равенство
, и (по определению умножения вектора на число) векторыиколлинеарны.

Достаточность . Пусть векторыиколлинеарны () (предполагаем, что они отличны от нулевого вектора; иначе их линейная зависимость очевидна).

По теореме (2.7) (см. §2.1,п.2 0) тогда
такое, что
, или
– линейная комбинация равна нулю, причем коэффициент приравен 1 – векторыилинейно зависимы.

Из этой теоремы вытекает следующее следствие.

Следствие . Если векторыине коллинеарны, то они линейно независимы.

Теорема 2 . Для того чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Необходимость . Пусть векторы,илинейно зависимы. Покажем, что они компланарны.

Из определения линейной зависимости векторов следует существование чисел
итаких, что линейная комбинация
, и при этом (для определенности)
. Тогда из этого равенства можно выразить вектор:=
, то есть векторравен диагонали параллелограмма, построенного на векторах, стоящих в правой части этого равенства (рис.2.6). Это означает, что векторы,илежат в одной плоскости.

Достаточность . Пусть векторы,икомпланарны. Покажем, что они линейно зависимы.

Исключим случай коллинеарности какой либо пары векторов (ибо тогда эта пара линейно зависима и по следствию 3 (см.п.1 0) все три вектора линейно зависимы). Заметим, что такое предположение исключает также существование нулевого вектора среди указанных трех.

Перенесем три компланарных вектора в одну плоскость и приведем их к общему началу. Через конец вектора проведем прямые, параллельные векторами; получим при этом векторыи(рис.2.7) – их существование обеспечено тем, что векторыине коллинеарные по предположению векторы. Отсюда следует, что вектор=+. Переписав это равенство в виде (–1)++=0, заключаем, что векторы,илинейно зависимы.

Из доказанной теоремы вытекает два следствия.

Следствие 1 . Пустьине коллинеарные векторы, вектор– произвольный, лежащий в плоскости, определяемой векторамии, вектор. Существуют тогда числаитакие, что

=+. (2.10)

Следствие 2 . Если векторы,ине компланарны, то они линейно независимы.

Теорема 3 . Любые четыре вектора линейно зависимы.

Доказательство опустим; с некоторыми изменениями оно копирует доказательство теоремы 2. Приведем следствие из этой теоремы.

Следствие . Для любых некомпланарных векторов,,и любого вектора
итакие, что

. (2.11)

Замечание . Для векторов в (трехмерном) пространстве понятия линейной зависимости и независимости имеют, как это следует из приведенных выше теорем 1-3, простой геометрический смысл.

Пусть имеются два линейно зависимых вектора и. В таком случае один из них является линейной комбинацией второго, то есть просто отличается от него численным множителем (например,
). Геометрически это означает, что оба вектора находятся на общей прямой; они могут иметь одинаковое или противоположное направления (рис.2.8 хх).

Если же два вектора расположены под углом друг к другу (рис.2.9 хх), то в этом случае нельзя получить один из них умножением другого на число – такие векторы линейно независимы. Следовательно, линейная независимость двух векторов иозначает, что эти векторы не могут быть уложены на одну прямую.

Выясним геометрический смысл линейной зависимости и независимости трех векторов.

Пусть векторы ,илинейно зависимы и пусть (для определенности) векторявляется линейной комбинацией векторови, то есть расположен в плоскости, содержащей векторыи. Это означает, что векторы,илежат в одной плоскости. Справедливо и обратное утверждение: если векторы,илежат в одной плоскости, то они линейно зависимы.

Таким образом, векторы ,илинейно независимы в том и только в том случае, если они не лежат в одной плоскости.

3 0 . Понятие базиса . Одним из важнейших понятий линейной и векторной алгебры является понятие базиса. Введем определения.

Определение 1 . Пара векторов называется упорядоченной, если указано, какой вектор этой пары считается первым, а какой вторым.

Определение 2. Упорядоченная пара,неколлинеарных векторов называется базисом на плоскости, определяемой заданными векторами.

Теорема 1 . Всякий векторна плоскости может быть представлен как линейная комбинация базисной системы векторов,:

(2.12)

и это представление единственно.

Доказательство . Пусть векторыиобразуют базис. Тогда любой векторможно представить в виде
.

Для доказательства единственности предположим, что имеется еще одно разложение
. Имеем тогда=0, причем хотя бы одна из разностей отлична от нуля. Последнее означает, что векторыилинейно зависимы, то есть коллинеарны; это противоречит утверждению, что они образуют базис.

Но тогда – разложение единственно.

Определение 3 . Тройка векторов называется упорядоченной, если указано, какой вектор ее считается первым, какой вторым, а какой третьим.

Определение 4 . Упорядоченная тройка некомпланарных векторов называется базисом в пространстве.

Здесь также справедлива теорема разложения и единственности.

Теорема 2 . Любой векторможет быть представлен как линейная комбинация базисной системы векторов,,:

(2.13)

и это представление единственно (опустим доказательство теоремы).

В разложениях (2.12) и (2.13) величины называются координатами векторав заданном базисе (точнее, аффинными координатами).

При фиксированном базисе
и
можно писать
.

Например, если задан базис
и дано, что
, то это означает, что имеет место представление (разложение)
.

4 0 . Линейные операции над векторами в координатной форме . Введение базиса позволяет линейные операции над векторами заменить обычными линейными операциями над числами – координатами этих векторов.

Пусть задан некоторый базис
. Очевидно, задание координат вектора в этом базисе полностью определяет сам вектор. Имеют место следующие предложения:

а) два вектора
и
равны тогда и только тогда, когда равны их соответственные координаты:

б) при умножении вектора
на числоего координаты умножаются на это число:

; (2.15)

в) при сложении векторов складываются их соответственные координаты:

Доказательства этих свойств опустим; докажем лишь для примера свойство б). Имеем

==

Замечание . В пространстве (на плоскости) можно выбрать бесконечно много базисов.

Приведем пример перехода от одного базиса к другому, установим соотношения между координатами вектора в различных базисах.

Пример 1 . В базисной системе
заданы три вектора:
,
и
. В базисе,,векторимеет разложение. Найти координаты векторав базисе
.

Решение . Имеем разложения:
,
,
; следовательно,
=
+2
+
= =
, то есть
в базисе
.

Пример 2 . Пусть в некотором базисе
четыре вектора заданы своими координатами:
,
,
и
.

Выяснить, образуют ли векторы
базис; в случае положительного ответа найти разложение векторав этом базисе.

Решение . 1) векторы образуют базис, если они линейно независимы. Составим линейную комбинацию векторов
(
) и выясним, при каких
иона обращается в нуль:
=0. Имеем:

=
+
+
=

По определению равенства векторов в координатной форме получим следующую систему (линейных однородных алгебраических) уравнений:
;
;
, определитель которой
=1
, то есть система имеет (лишь) тривиальное решение
. Это означает линейную независимость векторов
и, следовательно, они образуют базис.

2) разложим вектор в этом базисе. Имеем:=
или в координатной форме.

Переходя к равенству векторов в координатной форме, получим систему линейных неоднородных алгебраических уравнений:
;
;
. Решая ее (например, по правилу Крамера), получим:
,
,
и (
)
. Имеем разложение векторав базисе
:=.

5 0 . Проекция вектора на ось. Свойства проекций. Пусть имеется некоторая осьl , то есть прямая с выбранным на ней направлением и пусть задан некоторый вектор.Определим понятие проекции векторана осьl .

Определение . Проекцией векторана осьl называется произведение модуля этого вектора на косинус угла между осьюl и вектором (рис.2.10):

. (2.17)

Следствием этого определения является утверждение о том, что равные векторы имеют равные проекции (на одну и ту же ось).

Отметим свойства проекций.

1) проекция суммы векторов на некоторую ось l равна сумме проекций слагаемых векторов на ту же ось:

2) проекция произведения скаляра на вектор равна произведению этого скаляра на проекцию вектора на ту же ось:

=
. (2.19)

Следствие . Проекция линейной комбинации векторов на ось равна линейной комбинации их проекций:

Доказательства свойств опустим.

6 0 . Прямоугольная декартова система координат в пространстве .Разложение вектора по ортам осей. Пусть в качестве базиса выбраны три взаимно перпендикулярных орта; для них вводим специальные обозначения
. Поместив их начала в точкуO , направим по ним (в соответствии с ортами
) координатные осиOx ,Oy иOz (ось с выбранным на ней положительным направлением, началом отсчета и единицей длины называется координатной осью).

Определение . Упорядоченная система трех взаимно перпендикулярных координатных осей с общим началом и общей единицей длины называется прямоугольной декартовой системой координат в пространстве.

Ось Ox называется осью абсцисс,Oy – осью ординат иOz осью аппликат.

Займемся разложением произвольного вектора по базису
. Из теоремы (см.§2.2,п.3 0 , (2.13)) следует, что
может быть и единственным образом разложен по базису
(здесь вместо обозначения координат
употребляют
):

. (2.21)

В (2.21)
суть (декартовы прямоугольные) координаты вектора. Смысл декартовых координат устанавливает следующая теорема.

Теорема . Декартовы прямоугольные координаты
вектораявляются проекциями этого вектора соответственно на осиOx ,Oy иOz .

Доказательство. Поместим векторв начало системы координат – точкуO . Тогда его конец будет совпадать с некоторой точкой
.

Проведем через точку
три плоскости, параллельные координатным плоскостямOyz ,Oxz иOxy (рис.2.11 хх). Получим тогда:

. (2.22)

В (2.22) векторы
и
называются составляющими вектора
по осямOx ,Oy иOz .

Пусть через
иобозначены соответственно углы, образованные векторомс ортами
. Тогда для составляющих получим следующие формулы:

=
=
,
=

=
,
=

=
(2.23)

Из (2.21), (2.22) (2.23) находим:

=
=
;=
=
;=
=
(2.23)

– координаты
вектораесть проекции этого вектора на координатные осиOx ,Oy иOz соответственно.

Замечание . Числа
называются направляющими косинусами вектора.

Модуль вектора (диагональ прямоугольного параллелепипеда) вычисляется по формуле:

. (2.24)

Из формул (2.23) и (2.24) следует, что направляющие косинусы могут быть вычислены по формулам:

=
;
=
;
=
. (2.25)

Возводя обе части каждого из равенств в (2.25) и складывая почленно левые и правые части полученных равенств, придем к формуле:

– не любые три угла образуют некоторое направление в пространстве, но лишь те, косинусы которых связаны соотношением (2.26).

7 0 . Радиус-вектор и координаты точки .Определение вектора по его началу и концу . Введем определение.

Определение . Радиусом-вектором (обозначается) называется вектор, соединяющий начало координатO с этой точкой (рис.2.12 хх):

. (2.27)

Любой точке пространства соответствует определенный радиус-вектор (и обратно). Таким образом, точки пространства представляются в векторной алгебре их радиус-векторами.

Очевидно, координаты
точкиM являются проекциями ее радиус-вектора
на координатные оси:

(2.28’)

и, таким образом,

(2.28)

– радиус-вектор точки есть вектор, проекции которого на оси координат равны координатам этой точки. Отсюда следует две записи:
и
.

Получим формулы для вычисления проекций вектора
по координатам его начала – точке
и конца – точке
.

Проведем радиус-векторы
и вектор
(рис.2.13). Получим, что

=
=(2.29)

– проекции вектора на координатные орты равны разностям соответствующих координат конца и начала вектора.

8 0 . Некоторые задачи на декартовы координаты .

1) условия коллинеарности векторов . Из теоремы (см.§2.1,п.2 0 , формула (2.7)) следует, что для коллинеарности векторовинеобходимо и достаточно, чтобы выполнялось соотношение:=. Из этого векторного равенства получаем три в координатной форме равенства:, откуда следует условие коллинеарности векторов в координатной форме:

(2.30)

– для коллинеарности векторов инеобходимо и достаточно, чтобы их соответствующие координаты были пропорциональны.

2) расстояние между точками . Из представления (2.29) следует, что расстояние
между точками
и
определяется формулой

=
=. (2.31)

3) деление отрезка в данном отношении . Пусть даны точки
и
и отношение
. Нужно найти
– координаты точкиM (рис.2.14).

Имеем из условия коллинеарности векторов:
, откуда
и

. (2.32)

Из (2.32) получим в координатной форме:

Из формул (2.32’) можно получить формулы для вычисления координат середины отрезка
, полагая
:

Замечание . Будем считать отрезки
и
положительными или отрицательными в зависимости от того, совпадает их направление с направлением от начала
отрезка к концу
, или не совпадает. Тогда по формулам (2.32) – (2.32”) можно находить координат точки, делящей отрезок
внешним образом, то есть так, что делящая точкаM находится на продолжении отрезка
, а не внутри его. При этом конечно,
.

4) уравнение сферической поверхности . Составим уравнение сферической поверхности – геометрического места точек
, равноудаленных на расстояниеот некоторого фиксированного центра – точки
. Очевидно, что в данном случае
и с учетом формулы (2.31)

Уравнение (2.33) и есть уравнение искомой сферической поверхности.

Пусть L - произвольное линейное пространство, a i Î L, - его элементы (векторы).

Определение 3.3.1. Выражение , где , - произвольные вещественные числа, называется линейной комбинацией векторов a 1 , a 2 ,…, a n .

Если вектор р = , то говорят, что р разложен по векторам a 1 , a 2 ,…, a n .

Определение 3.3.2. Линейная комбинация векторов называется нетривиальной , если среди чисел есть хотя бы одно отличное от нуля. В противном случае, линейная комбинация называется тривиальной .

Определение 3 .3.3 . Векторы a 1 , a 2 ,…, a n называются линейно зависимыми, если существуют их нетривиальная линейная комбинация, такая что

= 0 .

Определение 3 .3.4. Векторы a 1 ,a 2 ,…, a n называются линейно независимыми, если равенство = 0 возможно лишь в случае, когда все числа l 1, l 2,…, l n одновременно равны нулю.

Отметим, что всякий ненулевой элемент a 1 можно рассматривать как линейно независимую систему, ибо равенство l a 1 = 0 возможно лишь при условии l = 0.

Теорема 3.3.1. Необходимым и достаточным условием линейной зависимости a 1 , a 2 ,…, a n является возможность разложения, по крайней мере, одного из этих элементов по остальным.

Доказательство. Необходимость. Пусть элементы a 1 , a 2 ,…, a n линейно зависимы. Это означает, что = 0 , причем хотя бы одно из чисел l 1, l 2,…, l n отлично от нуля. Пусть для определенности l 1 ¹ 0. Тогда

т. е. элемент a 1 разложен по элементам a 2 , a 3 , …, a n .

Достаточность. Пусть элемент a 1 разложен по элементам a 2 , a 3 , …, a n , т. е. a 1 = . Тогда = 0 , следовательно, существует нетривиальная линейная комбинация векторов a 1 , a 2 ,…, a n , равная 0 , поэтому они являются линейно зависимыми.

Теорема 3.3.2 . Если хотя бы один из элементов a 1 , a 2 ,…, a n нулевой, то эти векторы линейно зависимы.

Доказательство. Пусть a n = 0 , тогда = 0 , что и означает линейную зависимость указанных элементов.

Теорема 3.3.3 . Если среди n векторов какие-либо p (p < n) векторов линейно зависимы, то и все n элементов линейно зависимы.

Доказательство. Пусть для определенности элементы a 1 , a 2 ,…, a p линейно зависимы. Это означает, что существует такая нетривиальная линейная комбинация, что = 0 . Указанное равенство сохранится, если добавить к обеим его частям элемент . Тогда + = 0 , при этом хотя бы одно из чисел l 1, l 2,…, lp отлично от нуля. Следовательно, векторы a 1 , a 2 ,…, a n являются линейно зависимыми.

Следствие 3.3.1. Если n элементов линейно независимы, то любые k из них линейно независимы (k < n).

Теорема 3.3.4 . Если векторы a 1 , a 2 ,…, a n - 1 линейно независимы, а элементы a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то вектор a n можно разложить по векторам a 1 , a 2 ,…, a n - 1 .



Доказательство. Так как по условию a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то существует их нетривиальная линейная комбинация = 0 , причем (в противном случае, окажутся линейно зависимыми векторы a 1 , a 2 ,…, a n - 1). Но тогда вектор

что и требовалось доказать.



Загрузка...