emou.ru

Решение квадратных уравнений: формула корней, примеры. Калькулятор онлайн. Решение квадратного уравнения Дискриминант корни уравнения

Формулы корней квадратного уравнения. Рассмотрены случаи действительных, кратных и комплексных корней. Разложение на множители квадратного трехчлена. Геометрическая интерпретация. Примеры определения корней и разложения на множители.

Содержание

См. также: Решение квадратных уравнений онлайн

Основные формулы

Рассмотрим квадратное уравнение:
(1) .
Корни квадратного уравнения (1) определяются по формулам:
; .
Эти формулы можно объединить так:
.
Когда корни квадратного уравнения известны, то многочлен второй степени можно представить в виде произведения сомножителей (разложить на множители):
.

Далее считаем, что - действительные числа.
Рассмотрим дискриминант квадратного уравнения :
.
Если дискриминант положителен, , то квадратное уравнение (1) имеет два различных действительных корня:
; .
Тогда разложение квадратного трехчлена на множители имеет вид:
.
Если дискриминант равен нулю, , то квадратное уравнение (1) имеет два кратных (равных) действительных корня:
.
Разложение на множители:
.
Если дискриминант отрицателен, , то квадратное уравнение (1) имеет два комплексно сопряженных корня:
;
.
Здесь - мнимая единица, ;
и - действительная и мнимая части корней:
; .
Тогда

.

Графическая интерпретация

Если построить график функции
,
который является параболой, то точки пересечения графика с осью будут корнями уравнения
.
При , график пересекает ось абсцисс (ось ) в двух точках ().
При , график касается оси абсцисс в одной точке ().
При , график не пересекает ось абсцисс ().

Полезные формулы, связанные с квадратным уравнением

(f.1) ;
(f.2) ;
(f.3) .

Вывод формулы для корней квадратного уравнения

Выполняем преобразования и применяем формулы (f.1) и (f.3):




,
где
; .

Итак, мы получили формулу для многочлена второй степени в виде:
.
Отсюда видно, что уравнение

выполняется при
и .
То есть и являются корнями квадратного уравнения
.

Примеры определения корней квадратного уравнения

Пример 1


(1.1) .


.
Сравнивая с нашим уравнением (1.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант положителен, , то уравнение имеет два действительных корня:
;
;
.

Отсюда получаем разложение квадратного трехчлена на множители:

.

График функции y = 2 x 2 + 7 x + 3 пересекает ось абсцисс в двух точках.

Построим график функции
.
График этой функции является параболой. Она пересевает ось абсцисс (ось ) в двух точках:
и .
Эти точки являются корнями исходного уравнения (1.1).

;
;
.

Пример 2

Найти корни квадратного уравнения:
(2.1) .

Запишем квадратное уравнение в общем виде:
.
Сравнивая с исходным уравнением (2.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант равен нулю, , то уравнение имеет два кратных (равных) корня:
;
.

Тогда разложение трехчлена на множители имеет вид:
.

График функции y = x 2 - 4 x + 4 касается оси абсцисс в одной точке.

Построим график функции
.
График этой функции является параболой. Она касается оси абсцисс (ось ) в одной точке:
.
Эта точка является корнем исходного уравнения (2.1). Поскольку этот корень входит в разложение на множители два раза:
,
то такой корень принято называть кратным. То есть считают, что имеется два равных корня:
.

;
.

Пример 3

Найти корни квадратного уравнения:
(3.1) .

Запишем квадратное уравнение в общем виде:
(1) .
Перепишем исходное уравнение (3.1):
.
Сравнивая с (1), находим значения коэффициентов:
.
Находим дискриминант:
.
Дискриминант отрицателен, . Поэтому действительных корней нет.

Можно найти комплексные корни:
;
;
.

Тогда


.

График функции не пересекает ось абсцисс. Действительных корней нет.

Построим график функции
.
График этой функции является параболой. Она не пересекает ось абсцисс (ось ). Поэтому действительных корней нет.

Действительных корней нет. Корни комплексные:
;
;
.

См. также:

Во-первых, что же такое квадратное уравнение? Квадратным уравнением называется уравнение вида ax^2+bx+c=0, где х – переменная, a, b и с – некоторые числа, причем а не равно нулю.

2 шаг

Чтобы решить квадратное уравнение нам нужно знать формулу его корней, т.е, для начала, формулу дискриминанта квадратного уравнения. Выглядит она следующим образом: D=b^2-4ac. Можно вывести её самостоятельно, но обычно это не требуется, просто запомните формулу (!) она будет вам очень нужна в дальнейшем. Так же есть формула четверти дискриминанта, подробнее о ней чуть позже.

3 шаг

Возьмем как пример уравнение 3x^2-24x+21=0. Я решу его двумя способами.

4 шаг

Способ 1. Дискриминант.
3x^2-24x+21=0
a=3, b=-24, c=21
D=b^2-4ac
D=576-4*63=576-252=324=18^2
D>
х1,2= (-b 18)/6=42/6=7
x2=(-(-24)-18)/6=6/6=1

5 шаг

Настало время вспомнить о формуле четверти дискриминанта, которая способна здорово облегчить решение нашего уравнения =) итак, вот как она выглядит: D1=k^2-ac (k=1/2b)
Способ 2. Четверть Дискриминанта.
3x^2-24x+21=0
a=3, b=-24, c=21
k=-12
D1=k^2 – ac
D1=144-63=81=9^2
D1>0, значит, уравнение имеет 2 корня
x1,2= k +/ квадратный корень из D1)/a
x1= (-(-12) +9)/3=21/3=7
x2= (-(-12) -9)/3=3/3=1

Оценили на сколько легче решение?;)
Спасибо за внимание, желаю Вам успехов в учебе =)

  • В нашем случае в уравнениях D и D1 были >0 и мы получили по 2 корня. Если бы было D=0 и D1=0, то мы получили бы по одному корню, а если бы было D<0 и D1<0 соответственно, то у уравнений корней бы не было вовсе.
  • Через корень дискриминанта (D1) можно решать только те уравнения, в которых член b четный(!)

Надеюсь, изучив данную статью, вы научитесь находить корни полного квадратного уравнения.

С помощью дискриминанта решаются только полные квадратные уравнения, для решения неполных квадратных уравнений используют другие методы, которые вы найдете в статье "Решение неполных квадратных уравнений".

Какие же квадратные уравнения называются полными? Это уравнения вида ах 2 + b x + c = 0 , где коэффициенты a, b и с не равны нулю. Итак, чтобы решить полное квадратное уравнение, надо вычислить дискриминант D.

D = b 2 – 4ас.

В зависимости от того какое значение имеет дискриминант, мы и запишем ответ.

Если дискриминант отрицательное число (D < 0),то корней нет.

Если же дискриминант равен нулю, то х = (-b)/2a. Когда дискриминант положительное число (D > 0),

тогда х 1 = (-b - √D)/2a , и х 2 = (-b + √D)/2a .

Например. Решить уравнение х 2 – 4х + 4= 0.

D = 4 2 – 4 · 4 = 0

x = (- (-4))/2 = 2

Ответ: 2.

Решить уравнение 2х 2 + х + 3 = 0.

D = 1 2 – 4 · 2 · 3 = – 23

Ответ: корней нет .

Решить уравнение 2х 2 + 5х – 7 = 0 .

D = 5 2 – 4 · 2 · (–7) = 81

х 1 = (-5 - √81)/(2·2)= (-5 - 9)/4= – 3,5

х 2 = (-5 + √81)/(2·2) = (-5 + 9)/4=1

Ответ: – 3,5 ; 1 .

Итак представим решение полных квадратных уравнений схемой на рисунке1.

По этим формулам можно решать любое полное квадратное уравнение. Нужно только внимательно следить за тем, чтобы уравнение было записано многочленом стандартного вида

ах 2 + bx + c, иначе можно допустить ошибку. Например, в записи уравнения х + 3 + 2х 2 = 0, ошибочно можно решить, что

а = 1, b = 3 и с = 2. Тогда

D = 3 2 – 4 · 1 · 2 = 1 и тогда уравнение имеет два корня. А это неверно. (Смотри решение примера 2 выше).

Поэтому, если уравнение записано не многочленом стандартного вида, вначале полное квадратное уравнение надо записать многочленом стандартного вида (на первом месте должен стоять одночлен с наибольшим показателем степени, то есть ах 2 , затем с меньшим bx , а затем свободный член с.

При решении приведенного квадратного уравнения и квадратного уравнения с четным коэффициентом при втором слагаемом можно использовать и другие формулы. Давайте познакомимся и с этими формулами. Если в полном квадратном уравнении при втором слагаемом коэффициент будет четным (b = 2k), то можно решать уравнение по формулам приведенным на схеме рисунка 2.

Полное квадратное уравнение называется приведенным, если коэффициент при х 2 равен единице и уравнение примет вид х 2 + px + q = 0 . Такое уравнение может быть дано для решения, либо получается делением всех коэффициентов уравнение на коэффициент а , стоящий при х 2 .

На рисунке 3 приведена схема решения приведенных квадратных
уравнений. Рассмотрим на примере применение рассмотренных в данной статье формул.

Пример. Решить уравнение

3х 2 + 6х – 6 = 0.

Давайте решим это уравнение применяя формулы приведенные на схеме рисунка 1.

D = 6 2 – 4 · 3 · (– 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х 1 = (-6 - 6√3)/(2 · 3) = (6 (-1- √(3)))/6 = –1 – √3

х 2 = (-6 + 6√3)/(2 · 3) = (6 (-1+ √(3)))/6 = –1 + √3

Ответ: –1 – √3; –1 + √3

Можно заметить, что коэффициент при х в этом уравнении четное число, то есть b = 6 или b = 2k , откуда k = 3. Тогда попробуем решить уравнение по формулам, приведенным на схеме рисунка D 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 · 3) = 3√3

х 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

х 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Ответ: –1 – √3; –1 + √3 . Заметив, что все коэффициенты в этом квадратном уравнении делятся на 3 и выполнив деление, получим приведенное квадратное уравнение x 2 + 2х – 2 = 0 Решим это уравнение, используя формулы для приведенного квадратного
уравнения рисунок 3.

D 2 = 2 2 – 4 · (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 · 3) = 2√3

х 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

х 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Ответ: –1 – √3; –1 + √3.

Как видим, при решении этого уравнения по различным формулам мы получили один и тот же ответ. Поэтому хорошо усвоив формулы приведенные на схеме рисунка 1 , вы всегда сможете решить любое полное квадратное уравнение.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Эта тема поначалу может показаться сложной из-за множества не самых простых формул. Мало того что сами квадратные уравнения имеют длинные записи, еще и корни находятся через дискриминант. Всего получается три новые формулы. Не очень просто запомнить. Это удается только после частого решения таких уравнений. Тогда все формулы будут вспоминаться сами собой.

Общий вид квадратного уравнения

Здесь предложена их явная запись, когда самая большая степень записана первой, и дальше - по убыванию. Часто бывают ситуации, когда слагаемые стоят вразнобой. Тогда лучше переписать уравнение в порядке убывания степени у переменной.

Введем обозначения. Они представлены в таблице ниже.

Если принять эти обозначения, все квадратные уравнения сводятся к следующей записи.

Причем коэффициент а ≠ 0. Пусть эта формула будет обозначена номером один.

Когда уравнение задано, то непонятно, сколько корней будет в ответе. Потому что всегда возможен один из трех вариантов:

  • в решении будет два корня;
  • ответом будет одно число;
  • корней у уравнения не будет совсем.

И пока решение не доведено до конца, сложно понять, какой из вариантов выпадет в конкретном случае.

Виды записей квадратных уравнений

В задачах могут встречаться их разные записи. Не всегда они будут выглядеть как общая формула квадратного уравнения. Иногда в ней будет не хватать некоторых слагаемых. То что было записано выше — это полное уравнение. Если в нем убрать второе или третье слагаемое, то получится нечто другое. Эти записи тоже называются квадратными уравнениями, только неполными.

Причем исчезнуть могут только слагаемые у которых коэффициенты «в» и «с». Число «а» не может быть равно нулю ни при каких условиях. Потому что в этом случае формула превращается в линейное уравнение. Формулы для неполного вида уравнений будут такими:

Итак, видов всего два, кроме полных, есть еще и неполные квадратные уравнения. Пусть первая формула будет иметь номер два, а вторая — три.

Дискриминант и зависимость количества корней от его значения

Это число нужно знать для того, чтобы вычислить корни уравнения. Оно может быть посчитано всегда, какой бы ни была формула квадратного уравнения. Для того чтобы вычислить дискриминант, нужно воспользоваться равенством, записанным ниже, которое будет иметь номер четыре.

После подстановки в эту формулу значений коэффициентов, можно получить числа с разными знаками. Если ответ положительный, то ответом уравнения будут два различных корня. При отрицательном числе корни квадратного уравнения будут отсутствовать. В случае его равенства нулю ответ будет один.

Как решается квадратное уравнение полного вида?

По сути, рассмотрение этого вопроса уже началось. Потому что сначала нужно найти дискриминант. После того как выяснено, что имеются корни квадратного уравнения, и известно их число, нужно воспользоваться формулами для переменных. Если корней два, то нужно применить такую формулу.

Поскольку в ней стоит знак «±», то значений будет два. Выражение под знаком квадратного корня — это дискриминант. Поэтому формулу можно переписать по-другому.

Формула номер пять. Из этой же записи видно, что если дискриминант равен нулю, то оба корня примут одинаковые значения.

Если решение квадратных уравнений еще не отработано, то лучше до того, как применять формулы дискриминанта и переменной, записать значения всех коэффициентов. Позже этот момент не будет вызывать трудностей. Но в самом начале бывает путаница.

Как решается квадратное уравнение неполного вида?

Здесь все гораздо проще. Даже нет необходимости в дополнительных формулах. И не понадобятся те, что уже были записаны для дискриминанта и неизвестной.

Сначала рассмотрим неполное уравнение под номером два. В этом равенстве полагается вынести неизвестную величину за скобку и решить линейное уравнение, которое останется в скобках. В ответе будет два корня. Первый - обязательно равен нулю, потому что имеется множитель, состоящий из самой переменной. Второй получится при решении линейного уравнения.

Неполное уравнение под номером три решается переносом числа из левой части равенства в правую. Потом нужно разделить на коэффициент, стоящий перед неизвестной. Останется только извлечь квадратный корень и не забыть записать его два раза с противоположными знаками.

Далее записаны некоторые действия, помогащие научиться решать всевозможные виды равенств, которые превращаются в квадратные уравнения. Они будут способствовать тому, что ученик сможет избежать ошибок по невнимательности. Эти недочеты бывают причиной плохих оценок при изучении обширной темы «Квадратные уравнения (8 класс)». Впоследствии эти действия не нужно будет постоянно выполнять. Потому что появится устойчивый навык.

  • Сначала нужно записать уравнение в стандартном виде. То есть сначала слагаемое с самой большой степенью переменной, а потом - без степени и последним - просто число.
  • Если перед коэффициентом «а» появляется минус, то он может усложнить работу для начинающего изучать квадратные уравнения. От него лучше избавиться. Для этой цели все равенство нужно умножить на «-1». Это значит, что у всех слагаемых изменится знак на противоположный.
  • Таким же образом рекомендуется избавляться от дробей. Просто умножить уравнение на соответствующий множитель, чтобы знаменатели сократились.

Примеры

Требуется решить следующие квадратные уравнения:

х 2 − 7х = 0;

15 − 2х − х 2 = 0;

х 2 + 8 + 3х = 0;

12х + х 2 + 36 = 0;

(х+1) 2 + х + 1 = (х+1)(х+2).

Первое уравнение: х 2 − 7х = 0. Оно неполное, поэтому решается так, как было описано для формулы под номером два.

После вынесения за скобки получается: х (х - 7) = 0.

Первый корень принимает значение: х 1 = 0. Второй будет найден из линейного уравнения: х - 7 = 0. Легко заметить, что х 2 = 7.

Второе уравнение: 5х 2 + 30 = 0. Снова неполное. Только решается оно так, как описано для третьей формулы.

После перенесения 30 в правую часть равенства: 5х 2 = 30. Теперь нужно выполнить деление на 5. Получается: х 2 = 6. Ответами будут числа: х 1 = √6, х 2 = - √6.

Третье уравнение: 15 − 2х − х 2 = 0. Здесь и далее решение квадратных уравнений будет начинаться с их переписывания в стандартный вид: − х 2 − 2х + 15 = 0. Теперь пришло время воспользоваться вторым полезным советом и умножить все на минус единицу. Получается х 2 + 2х - 15 = 0. По четвертой формуле нужно вычислить дискриминант: Д = 2 2 - 4 * (- 15) = 4 + 60 = 64. Он представляет собой положительное число. Из того, что сказано выше, получается, что уравнение имеет два корня. Их нужно вычислить по пятой формуле. По ней получается, что х = (-2 ± √64) / 2 = (-2 ± 8) / 2. Тогда х 1 = 3, х 2 = - 5.

Четвертое уравнение х 2 + 8 + 3х = 0 преобразуется в такое: х 2 + 3х + 8 = 0. Его дискриминант равен такому значению: -23. Поскольку это число отрицательное, то ответом к этому заданию будет следующая запись: «Корней нет».

Пятое уравнение 12х + х 2 + 36 = 0 следует переписать так: х 2 + 12х + 36 = 0. После применения формулы для дискриминанта получается число ноль. Это означает, что у него будет один корень, а именно: х = -12/ (2 * 1) = -6.

Шестое уравнение (х+1) 2 + х + 1 = (х+1)(х+2) требует провести преобразования, которые заключаются в том, что нужно привести подобные слагаемые, до того раскрыв скобки. На месте первой окажется такое выражение: х 2 + 2х + 1. После равенства появится эта запись: х 2 + 3х + 2. После того как подобные слагаемые будут сосчитаны, уравнение примет вид: х 2 - х = 0. Оно превратилось в неполное. Подобное ему уже рассматривалось чуть выше. Корнями этого будут числа 0 и 1.

Я им такую классную теорему придумал,
а они решают через дискриминант:-(((
(с) Франсуа Виет
“Несуществующие высказывания”

Формула корней, или длинный способ

Всем, кто хотя бы мало-мальски присутствовал на уроках математики в 8 классе, известна формула корней квадратного уравнения. Решение по формуле корней часто называют в простонародье “решением через дискриминант”. Напомним вкратце формулу корней.

[Вы можете также просмотреть содержание этой статьи в видеоформате ]

Квадратное уравнение имеет вид ax 2 +bx +c = 0, где a , b , c – некоторые числа. Например, в уравнении 2x 2 + 3x – 5 = 0 эти числа равны: a = 2, b = 3. c = -5. Прежде, чем решать любое квадратное уравнение, нужно “увидеть” эти числа и понять, чему они равны.

Далее считают так называемый дискриминант по формуле D=b^2-4ac . В нашем случае D = 3^2 – 4 \cdot 2 \cdot (-5) = 9 + 40 = 49. Затем из дискриминанта извлекают корень: \sqrt{D} = \sqrt{49} = 7 .

После того, как вычислили дискриминант, применяют формулу корней: x_1=\frac{-b-\sqrt{D}}{2a}; x_2=\frac{-b+\sqrt{D}}{2a} :

x_1=\frac{-3-7}{2 \cdot 2}=\frac{-10}{4}=-2,5
x_2= \frac{-3+7}{2 \cdot 2}=\frac{4}{4}=1

И таким образом, уравнение решено. Оно имеет два корня: 1 и -2,5.

Но это уравнение, как и множество других предлагаемых в школьных учебниках/задачниках, можно было решить гораздо более быстрым способом, если знать пару-тройку лайфхаков. И речь не только о теореме Виета, хотя и она является полезным инструментом.

Лайфхак первый . Если a + b + c = 0, то x_1=1, x_2=\frac{c}{a} .

Он применяется только в том случае, если в квадратном уравнении все три коэффициента a , b , c при сложении дают 0. Например, у нас было уравнение 2x 2 + 3x – 5 = 0 . Сложив все три коэффициента, получим 2 + 3 – 5, что равно 0. В этом случае можно не считать дискриминант и не применять формулу корней. Вместо этого можно сразу написать, что

x_1=1,
x_2=\frac{c}{a}=\frac{-5}{2}=-2,5

(заметьте, что тот же результат мы получили в формуле корней).

Часто спрашивают, всегда ли будет получаться x_1=1 ? Да, всегда, когда a + b + c = 0.

Лайфхак второй . Если a + c = b , то x_1=-1, x_2=-\frac{c}{a} .

Пусть дано уравнение 5x 2 + 6x + 1 = 0 . В нём a = 5, b = 6, c = 1. Если сложить “крайние” коэффициенты a и c , получим 5+1 = 6, что как раз равно “среднему” коэффициенту b . Значит, можем обойтись без дискриминанта! Сразу же записываем:

x_1=-1,
x_2=-\frac{c}{a}=\frac{-1}{5}=-0,2

Лайфхак третий (теорема, обратная теореме Виета). Если a = 1, то

Рассмотрим уравнение x 2 – 12x + 35 = 0. В нём a = 1, b = -12, c = 35. Ни под первый, ни под второй лайфхак оно не подходит – условия не соблюдаются. Если бы оно подходило под первый или под второй, то мы бы обошлись без теоремы Виета.

Само использование теоремы Виета подразумевает понимание некоторых полезных приёмов.

Первый приём . Не стоит стесняться записывать саму систему вида \begin{cases} x_1+x_2 = -b \\ x_1 \cdot x_2 = c \end{cases} , которая получается при использовании теоремы Виета. Не нужно пытаться во что бы ты ни стало решить уравнение абсолютно устно, без письменных пометок, как это делают “продвинутые пользователи”.

Для нашего уравнения x 2 – 12x + 35 = 0 эта система имеет вид

\begin{cases} x_1+x_2 = 12 \\ x_1 \cdot x_2 = 35 \end{cases}

Теперь нам нужно устно подобрать числа x_1 и x_2 , которые удовлетворяют нашей системе, т.е. в сумме дают 12, а при умножении 35.

Так вот, второй приём заключается в том, что начинать подбор нужно не с суммы, а с произведения. Посмотрим на второе уравнение системы и зададимся вопросом: какие числа при умножении дают 35? Если всё в порядке с таблицей умножения, то сразу приходит на ум ответ: 7 и 5. И только теперь подставим эти числа в первое уравнение: будем иметь 7 + 5 = 12, что является верным равенством. Итак, числа 7 и 5 удовлетворяют обоим уравнениям, поэтому мы сразу пишем:

x_1 = 7, x_2 = 5

Третий приём заключается в том, что если числа не удаётся подобрать быстро (в течение 15-20 секунд), то вне зависимости от причины нужно считать дискриминант и использовать формулу корней. Почему? Потому что корни могут не подбираться, если уравнение их вообще не имеет (дискриминант отрицательный), или же корни представляют собой числа, не являющиеся целыми.

Тренировочные упражнения по решению квадратных уравнений

Попрактикуйтесь! Попробуйте решить следующие уравнения. На каждое уравнение смотрите в следующей последовательности:

  • если уравнение подходит под первый лайфхак (когда a + b + c = 0), то решаем с его помощью;
  • если уравнение подходит под второй лайфхак (когда a + c = b), то решаем с его помощью;
  • если уравнение подходит под третий лайфхак (теорему Виета), решаем с его помощью;
  • и только в самом крайнем случае – если ничего не подошло и/или с помощью теоремы Виета решить не получилось – считаем дискриминант. Еще раз: дискриминант – в самую последнюю очередь !
  1. Решите уравнение x 2 + 3x + 2 = 0
    Просмотреть решение и ответ

    См. лайфхак второй
    В данном уравнении a = 1, b = 3, c = 2. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{2}{1}=-2 .
    Ответ: -1, -2.

  2. Решите уравнение x 2 + 8x – 9 = 0
    Просмотреть решение и ответ

    См. лайфхак первый
    В данном уравнении a = 1, b = 8, c = -9. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{-9}{1}=-9 .
    Ответ: 1, -9.

  3. Решите уравнение 15x 2 – 11x + 2 = 0
    Просмотреть решение и ответ

    Данное уравнение (единственное из всего списка) не попадает ни под один из лайфхаков, поэтому решать его будем по формуле корней:
    D=b^2-4ac = (-11)^2 – 4 \cdot 15 \cdot 2 = 121 – 120 = 1. x_1=\frac{11-1}{2 \cdot 15}=\frac{10}{30}=\frac{1}{3} x_2= \frac{11+1}{2 \cdot 15}=\frac{12}{30}=\frac{2}{5} Ответ: \frac{1}{3}, \frac{2}{5}.

  4. Решите уравнение x 2 + 9x + 20 = 0
    Просмотреть решение и ответ


    \begin{cases} x_1+x_2 = -9 \\ x_1 \cdot x_2 = 20 \end{cases}
    Подбором устанавливаем, что x_1 = -4, x_2 = -5 .
    Ответ: -4, -5.

  5. Решите уравнение x 2 – 7x – 30 = 0
    Просмотреть решение и ответ

    См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 7 \\ x_1 \cdot x_2 = -30 \end{cases}
    Подбором устанавливаем, что x_1 = 10, x_2 = -3 .
    Ответ: 10, -3.

  6. Решите уравнение x 2 – 19x + 18 = 0
    Просмотреть решение и ответ

    См. лайфхак первый
    В данном уравнении a = 1, b = -19, c = 18. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{18}{1}=18 .
    Ответ: 1, 18.

  7. Решите уравнение x 2 + 7x + 6 = 0
    Просмотреть решение и ответ

    См. лайфхак второй
    В данном уравнении a = 1, b = 7, c = 6. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{6}{1}=-6 .
    Ответ: -1, -6.

  8. Решите уравнение x 2 – 8x + 12 = 0
    Просмотреть решение и ответ

    См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 8 \\ x_1 \cdot x_2 = 12 \end{cases}
    Подбором устанавливаем, что x_1 = 6, x_2 = 2 .
    Ответ: 6, 2.

  9. Решите уравнение x 2 – x – 6 = 0
    Просмотреть решение и ответ

    См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 1 \\ x_1 \cdot x_2 = -6 \end{cases}
    Подбором устанавливаем, что x_1 = 3, x_2 = -2 .
    Ответ: 3, -2.

  10. Решите уравнение x 2 – 15x – 16 = 0
    Просмотреть решение и ответ

    См. лайфхак второй
    В данном уравнении a = 1, b = -15, c = -16. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{-16}{1}=16 .
    Ответ: -1, 16.

  11. Решите уравнение x 2 + 11x – 12 = 0
    Просмотреть решение и ответ

    См. лайфхак первый
    В данном уравнении a = 1, b = 11, c = -12. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{-12}{1}=-12 .
    Ответ: 1, -12.



Загрузка...

Реклама