emou.ru

Мысленный эксперимент с оживающей статуей проводил. Гравитационные волны. Генерация гравитационных волн

Их используют в таких областях, как философия и теоретическая физика, когда провести физический эксперимент невозможно.

Они служат хорошей пищей для размышлений, и заставляют пересмотреть то, что мы считаем, как данное.

Вот одни из самых известных мысленных экспериментов.

Научные эксперименты

1. Обезьяна и охотник

“Охотник следит за обезьяной на дереве, прицеливается и стреляет. В момент, когда пуля вылетает из оружия, обезьяна падает с ветки на землю. Как должен прицелиться охотник, чтобы попасть в обезьяну ?

1. Целится в обезьяну

2. Целится выше головы обезьяны

3. Целится ниже обезьяны

Результат может быть неожиданным. Гравитация действует на обезьяну и пулю с той же скоростью, поэтому независимо от того, как быстро летит пуля (учитывая сопротивление воздуха и другие факторы), охотник должен целиться в обезьяну.

Результат можно посмотреть в этой компьютерной симуляции

2. Пушечное ядро Ньютона


В этом мысленном эксперименте, нужно представить себе пушку, находящуюся на очень высокой горе, которая выстреливает свое ядро под углом 90 градусов к Земле .

Диаграмма показывает несколько возможных траекторий полета пушечного ядра, в зависимости от того, как быстро оно будет лететь в момент запуска.

Если оно будет двигаться слишком медленно, то, в конце концов, упадет вниз на Землю.

Если же оно будет очень быстрым, оно может освободиться от гравитации Земли и направиться в космос. Если оно достигнет средней скорости, то будет двигаться по орбите Земли .

Этот эксперимент сыграл большую роль в изучении гравитации, заложив основу для создания спутников и космических полетов.

Пример эксперимента

3. Загадка токсина Кавки


“Эксцентричный миллиардер предлагает вам флакон с токсичным веществом, который, если вы его выпьете, вызовет у вас мучительную боль на один день, но не будет угрожать жизни, и не будет иметь каких-либо долговременных последствий.

Миллиардер заплатит вам 1 миллион долларов на следующее утро, если сегодня в полночь вы намереваетесь выпить токсичное вещество завтра в полдень . При этом, вам не обязательно выпить токсин, чтобы получить деньги. Деньги уже будут на вашем счету за несколько часов до того, как настанет время его выпить. Но … в случае если вам это удастся.

Все что нужно сделать, это намереваться сегодня в полночь выпить токсин завтра в полдень. Вы можете передумать после того, как получите деньги и не пить токсин. Вопрос состоит вот в чем: можно ли намереваться выпить токсичное вещество ?

Согласно американскому философу Грегори Кавке, было бы очень сложно, практически невозможно, намереваться сделать что-то, если мы не намереваемся сделать это. Рациональный человек знает, что он не выпьет яд, и потому не может намереваться его выпить.

4. Загадка слепого


Эту загадку задал ирландский философ Ульям Молинье (William Molyneux) британскому мыслителю Джону Локку.

Представьте себе, что слепой с рождения человек, который научился с помощью прикосновений различать между кубом и шаром, внезапно прозрел.

Сможет ли он с помощью зрения, до того как коснется объектов, определить, что есть куб, а что шар ?

Ответ: Нет. Несмотря на то, что он получил опыт, используя осязание, это не повлияет на его зрение.

Ответ на этот вопрос сможет решить одну из фундаментальных проблем человеческого разума.

Так, например, эмпиристы считают, что человек рождается как “чистая доска” и становится суммой всего накопленного опыта. Напротив нативисты возражали, что нашразум с самого начала содержит представления , которые потом активизируются зрением, звуками и прикосновениями.

Если бы слепой человек внезапно прозрел и смог сразу различить, где куб и где шар, это означало бы, что знания являются врожденными.

Несколько лет назад профессор Паван Синха (Pawan Sinha) из Массачусесткого технологического института провел исследование на пациентах, которым вернули зрение. Результаты подтвердили предположение Молинье.

Эксперимент (видео)

5. Парадокс близнецов


Эйнштейн так сформулировал эту проблему:

“Представьте себе двух близнецов Джо и Фрэнка. Джо домосед, а Фрэнк любит путешествовать.

На свое 20-летие, один из них отправляется на космическом корабле в космос, путешествуя со скоростью света . Его путешествие на этой скорости занимает 5 лет, и он возвращается, когда ему уже 30 лет. Вернувшись домой, он узнает, что на Земле прошло 50 лет. Его брат близнец сильно состарился и ему уже 70 лет.

Тут вступает в силу закон относительности, согласно которому, чем быстрее вы движетесь в космосе, тем медленнее вы продвигаетесь во времени .

6. Квантовое бессмертие и квантовое самоубийство


В этом мысленном эксперименте, предложенном американским теоретиком Максом Тегмароком, участник направляет на себя ружье, которое снабжено механизмом, измеряющим вращение квантовой частицы.

В зависимости от измерений, ружье может либо выстрелить, либо нет. Этот гипотетический процесс стал известен, как квантовое самоубийство .

Если верна многомировая интерпретация, то есть существование параллельных Вселенных, то Вселенная расщепится на две, в одной из которых участник будет жить, а в другой он умрет .

Такое разветвление будет происходить каждый раз при нажатии на курок. Сколько бы выстрелов не произошло, в одном из миров всегда останется версия участника, которая выживет. Таким образом, он приобретет квантовое бессмертие.

Эксперименты ученых

7. Бесконечные обезьяны


Этот эксперимент, который известен, как “теорема бесконечных обезьян “, утверждает что, если бесконечное количество обезьян случайным образом нажмут на клавиши бесконечного числа пишущих машинок, в какой-то момент они совершенно точно создадут произведения Шекспира.

Основная идея состоит в том, что бесконечное количество действующих сил и бесконечное время случайным образом создадут все и вся . Теорема является одним из лучших способов продемонстрировать природу бесконечности.

В 2011 году американский программист Джесси Андерсон (Jesse Anderson) решил проверить эту теорему с помощью виртуальных обезьян. Он создал несколько миллионов “виртуальных обезьян ” – специальные программы, которые вводят случайную последовательность букв. Когда последовательность букв совпадает со словом из Шекспировского произведения, оно выделяется. Таким образом, почти через месяц ему удалось воспроизвести поэму Шекспира “Жалоба влюбленной”.

8. Кот Шредингера

Парадокс кота Шредингера связан с квантовой механикой и был впервые предложен физиком Эрвином Шредингером. Эксперимент состоит в том, что кот, заперт внутри коробки вместе с радиоактивным элементом и пузырьком смертельного яда . Шанс того, что радиоактивный элемент распадется в течение часа, составляет 50/50. Если это произойдет, молот, прикрепленный к счетчику Гейгера, разобьет пузырек, выпустит яд и убьет кота.

Так как существуют равные шансы того, что это случится, или не случится, то до того, как коробку откроют, кот может быть одновременно и жив и мертв.

Суть состоит в том, что, так как никто не наблюдает за тем, что происходит, кот может существовать в разных состояниях . Это похоже на известную загадку, которая звучит так: “Если дерево упало в лесу, и никто этого не слышит, издает ли оно звук?”

Кот Шредингера показывает необычную природу квантовой механики, согласно которой некоторые частицы настолько малы, что мы не можем их измерить, не изменив их . До того, как мы их измерим, они существуют в суперпозиции – то есть в любом состоянии одновременно.

Эксперимент науки:

9. Мозг в колбе


Этот мысленный эксперимент пронизывает многие области, начиная от когнитивной науки до философии и популярной культуры.

Суть эксперимента состоит в том, что некий ученый извлек ваш мозг из тела и помесил его в колбу с питательным раствором . К мозгу подключили электроды и подсоединили к компьютеру, который генерирует изображения и ощущения.

Так как вся информация о мире проходит через мозг, этот компьютер может симулировать ваш опыт.

Вопрос: Если бы это было возможно, как бы вы могли действительно доказать, что мир вокруг вас реален , а не является симуляцией компьютера?

Все это похоже на сюжет фильмы “Матрица”, на который в частности повлиял эксперимент “мозг в колбе”.

По сути, этот эксперимент заставляет вас задуматься о том, что значит быть человеком. Так известный философ Рене Декарт задавался вопросом, можно ли действительно доказать, что все ощущения принадлежат нам самим, а не являются иллюзией, вызванной “злым демоном”. Он отразил это в своем знаменитом высказывании “Cogito ergo sum”(“Я мыслю, и значит, существую”). Однако в данном случае мозг, подключенный к электродам, тоже может думать.

10. Китайская комната


Китайская комната – еще один известный мысленный эксперимент, предложенный в 1980-х годах американским философом Джоном Серлем.

Представьте, что человека, говорящего на английском языке заперли в комнате, в которой есть небольшая щель для писем. У человека есть корзины с китайскими иероглифами и учебник с инструкциями на английском языке , который поможет перевести с китайского. Через щель в двери ему передают листки бумаги с набором китайских иероглифов. Мужчина может использовать учебник, чтобы перевести фразы и отправить ответ на китайском языке.

Хотя сам он ни слова не говорит на китайском, он может убедить находящихся снаружи, что в совершенстве владеет китайским.

Этот эксперимент был предложен с целью опровергнуть предположение, что компьютеры или другие виды искусственного интеллекта могут думать и понимать . Компьютеры не понимают информацию, которая им дается, но у них может быть программа, которая создает видимость человеческого интеллекта.

Перед учеными часто возникает ситуация, когда проверить ту или иную теорию экспериментально очень сложно или даже попросту невозможно. Например, когда речь идет о движении с околосветовыми скоростями или о физике в окрестностях черных дыр. Тогда на помощь приходят мысленные эксперименты. Предлагаем вам поучаствовать в некоторых из них.

Мысленные эксперименты это последовательности логических умозаключений, цель которых - подчеркнуть некое свойство теории, сформулировать разумный контрпример или доказать какой-то факт. В целом, любое доказательство в том или ином виде - мысленный эксперимент. Главная прелесть умственных упражнений заключается в том, что они не требуют никакого оборудования и зачастую - никаких специальных знаний (как, например, при обработке результатов экспериментов LHC). Так что устраивайтесь поудобнее, мы начинаем.

Кот Шредингера

Пожалуй, самый известный мысленный эксперимент - это эксперимент с котом (точнее, кошкой), предложенный Эрвином Шредингером более 80 лет назад. Начнем с контекста эксперимента. В тот момент квантовая механика только начинала свое победное шествие, и ее необычные законы казались противоестественными. Один из таких законов - то, что квантовые частицы могут существовать в суперпозиции двух состояний: например, одновременно «вращаться» по часовой стрелке и против часовой стрелки.

Эксперимент. Представьте себе герметичный ящик (достаточно большой), в котором есть кот, достаточное количество воздуха, счетчик Гейгера и радиоактивный изотоп с известным временем полураспада. Как только счетчик Гейгера обнаруживает распад атома, специальный механизм разбивает ампулу с ядовитым газом и кот погибает. Спустя время полураспада изотоп с вероятностью 50 процентов распался и с точно такой же вероятностью остался цел. А значит и кот либо жив, либо умер - словно бы находясь в суперпозиции состояний.

Интерпретация. Шредингер хотел показать противоестественность суперпозиции, доведя ее до абсурда, - такая большая система, как целый кот, не может быть одновременно живой и мертвой. Стоит отметить, что с точки зрения квантовой механики тот момент, когда счетчик Гейгера срабатывает на распад ядра, происходит измерение - взаимодействие с классическим макроскопическим объектом. В результате суперпозиция должна распадаться.

Интересно, что физики уже проводят эксперименты, аналогичные введению кота в суперпозицию. Но вместо кота в них используются другие крупные по меркам микромира объекты - например, молекулы .

Парадокс близнецов

Этот мысленный эксперимент часто приводят в качестве критики специальной теории относительности Эйнштейна. Он основан на том, что при движении с околосветовыми скоростями замедляется течение времени в системе отсчета, связанной с движущимся объектом.

Эксперимент. Представьте себе далекое будущее, в котором существуют ракеты, которые могут перемещаться со скоростью, близкой к скорости света. На Земле есть два брата-близнеца, один из них - путешественник, а другой - домосед. Предположим, брат-путешественник сел на одну из таких ракет и совершил путешествие на ней, после чего вернулся. Для него, в тот момент, когда он летел на околосветовой скорости относительно Земли, время текло медленнее, чем для брата-домоседа. Значит, когда он вернется на Землю, он окажется моложе своего брата. С другой стороны, его брат сам двигался с околосветовой скоростью относительно ракеты - а значит, положение обоих братьев в некотором смысле эквивалентно и при встрече они вновь должны быть одного возраста.

Интерпретация. В действительности брат-путешественник и брат-домосед не эквивалентны, поэтому, как и подсказывает мысленный эксперимент, путешественник окажется моложе. Интересно, что этот эффект наблюдается и в настоящих экспериментах: короткоживущие частицы, путешествующие с околосветовой скоростью, словно бы «живут» дольше из-за замедления времени в их системе отсчета. Если попытаться расширить этот результат на фотоны, то окажется, что они и вовсе живут в остановившемся времени.

Лифт Эйнштейна

В физике есть несколько понятий массы. Например, есть масса гравитационная - это мера того, как тело вступает в гравитационное взаимодействие. Именно она вжимает нас в диван, кресло, сиденье метро или пол. Есть масса инерционная - она определяет, как мы ведем себя в ускоряющейся системе координат (она заставляет нас отклоняться назад в трогающемся со станции поезде метро). Как видно, равенство этих масс - не очевидное утверждение.

В основе общей теории относительности лежит принцип эквивалентности - неотличимость гравитационных сил от псевдосил инерции. Один из способов это продемонстрировать - следующий эксперимент.

Эксперимент. Представьте себе, что вы находитесь в звукоизолированной, герметично закрытой кабине лифта с достаточным количеством кислорода и всего необходимого. Но при этом вы можете быть в любой точке Вселенной. Ситуация осложняется тем, что кабина может двигаться, развивая постоянное ускорение. Вы ощущаете, что вас слегка притягивает к полу кабины. Можете ли вы отличить - связано ли это с тем, что кабина находится, например, на Луне или с тем, что кабина движется с ускорением 1/6 ускорения свободного падения?

Интерпретация. По мнению Эйнштейна - нет, не сможете. Поэтому и для остальных процессов и явлений нет разницы между равноускоренным движением в лифте и в поле силы гравитации. С некоторыми оговорками из этого следует, что гравитационное поле можно заменить на ускоряющуюся систему отсчета.

Сегодня в существовании и материальности гравитационных волн не сомневается никто - год назад коллаборации LIGO и VIRGO поймали долгожданный сигнал от столкновения черных дыр. Однако в начале XX века, после первой публикации статьи Эйнштейна о волнах искажения пространства-времени, к ним относились скептически. В частности, даже сам Эйнштейн в какой-то момент сомневался в их реалистичности - они могли оказаться лишенной физического смысла математической абстракцией. Чтобы наглядно показать их реалистичность, Ричард Фейнман (анонимно) предложил следующий мысленный эксперимент.

Эксперимент. Для начала - гравитационная волна представляет собой волну изменения метрики пространства. Иными словами, она изменяет расстояние между объектами. Представьте себе трость, вдоль которой с очень малым трением могут перемещаться шарики. Пусть трость расположена перпендикулярно направлению движения гравитационной волны. Тогда, когда волна достигает трости, расстояние между шариками сначала сокращается, а затем увеличивается, в то время как трость остается неподвижной. Значит, они скользят и выделяют тепло в пространство.

Интерпретация. Это значит, что гравитационная волна несет в себе энергию и вполне реальна. Можно допустить, что трость сжимается и вытягивается вместе с шариками, компенсируя относительное движение, но, как сам Фейнман, ее сдерживают электростатические силы, действующие между атомами.

Демон Лапласа

Следующая пара экспериментов - «демоническая». Начнем с менее известного, но от того не менее красивого Демона Лапласа, который позволяет (или нет) узнать будущее Вселенной.

Эксперимент. Представьте себе, что где-то существует огромный, очень мощный компьютер. Настолько мощный, что он может, взяв в качестве отправной точки состояние всех частиц Вселенной, рассчитать, как эти состояния будут развиваться (эволюционировать). Иными словами, этот компьютер может предсказывать будущее. Чтобы было еще интереснее, представим себе, что компьютер предсказывает будущее быстрее, чем оно наступает, - скажем, за минуту он может описать такое состояние всех атомов во Вселенной, какого они достигнут через две минуты от момента начала расчета.

Предположим, в 00:00 мы запустили расчет, дождались его конца (в 00:01) - теперь у нас есть предсказание на 00:02. Запустим второй расчет, который завершится в 00:02 и предскажет будущее в момент 00:03. А теперь обратите внимание на то, что сам компьютер - тоже часть нашей вымышленной Вселенной. Это значит, что в 00:01 он знает свое состояние на момент 00:02 - знает результат расчета состояния Вселенной на момент времени 00:03. А следовательно, повторив такой же прием, можно показать, что машина знает будущее Вселенной в 00:04 и так далее - до бесконечности.

Интерпретация. Очевидно, что скорость расчета, реализующаяся в материальном устройстве, не может быть бесконечной - следовательно, предсказать будущее с помощью компьютера невозможно. Но стоит отметить несколько важных моментов. Во-первых, эксперимент запрещает материального демона Лапласа - состоящего из атомов. Во-вторых, следует отметить, что демон Лапласа возможен в условиях, когда время жизни Вселенной фундаментально ограничено.

Демон Максвелла

И напоследок, Демон Максвелла, - классический эксперимент из курса термодинамики. Он был введен Джеймсом Максвеллом, чтобы проиллюстрировать способ нарушить второе начало термодинамики (то самое, запрещающее создание вечного двигателя в одной из своих формулировок).

Эксперимент. Представьте себе средних размеров герметичный сосуд, разделенный внутри перегородкой на две части. В перегородке есть небольшая дверца или люк. Рядом с ней сидит разумное микроскопическое существо - собственно демон Максвелла.

Наполним сосуд газом при некоторой температуре - для определенности кислородом при комнатной температуре. Важно помнить, что температура - это число, отражающее среднюю скорость движения молекул газа в сосуде. Например, для кислорода в нашем эксперименте эта скорость равна 500 метрам в секунду. Но в газе есть молекулы, двигающиеся быстрее и медленнее этой отметки.

Задача демона - следить за скоростями частиц, подлетающих к дверце в перегородке. Если частица, летящая из левой половины сосуда, имеет скорость больше 500 метров в секунду, демон ее пропустит, открыв дверь. Если меньше - частица не попадет в правую половину. И наоборот, если частица из правой половины бака имеет скорость меньше, чем 500 метров в секунду, демон ее пропустит в левую половину.

Подождав достаточно долго, мы обнаружим, что средняя скорость молекул в правой половине сосуда выросла, а в левой опустилась, - значит выросла и температура в правой половине. Мы можем воспользоваться этим избыточным теплом, например, для работы тепловой машины. При этом для сортировки атомов нам не потребовалась внешняя энергия - всю работу проделал демон Максвелла.

Интерпретация. Главное последствие работы демона - уменьшение общей энтропии системы. То есть, после разделения атомов на горячие и холодные мера хаотичности состояния газа в сосуде уменьшается. Второй закон термодинамики строго запрещает это для замкнутых систем.

Но в действительности эксперимент с демоном Максвелла оказывается не таким парадоксальным, если включить в описание системы самого демона. Он тратит работу на открытие и закрытие створки, а также, и это немаловажно, на измерение скоростей атомов. Все это компенсирует падение энтропии газа. Отметим, что существуют эксперименты по созданию аналогов демонов Максвелла.

Особенно примечательна «броуновская трещотка» - хотя сама она не разделяет молекулы на теплые и холодные, она пользуется хаотичным броуновским движением для произведения работы. Трещотка состоит из лопастей и шестерни, которая может вращаться лишь в одну сторону (ее ограничивает специальный зажим). Лопасть должна вращаться случайным образом, при этом совершить полноценный оборот ей удастся, только если ее предполагаемое направление вращения совпадет с разрешенным вращением шестерни. Однако Ричард Фейнман подробно проанализировал устройство и объяснил, почему оно не работает - усредненное воздействие частиц в камере будет обнуляться.

Владимир Королёв

У. Эдвард Деминг проводил эксперимент с красными бусинками в своих 4-х дневных семинарах. Смотрите видео эксперимента с красными и белыми бусинами на этой странице.

Эксперимент Деминга с красными бусинками. Как провести эксперимент с красными и белыми бусинками самостоятельно? Что необходимо для проведения эксперимента с красными бусинками, который проводил Э. Деминг?

Тренинг с экспериментом У. Э. Деминга "Красные бусинки".

“Руководители заняты копеечными делами,

они игнорируют огромные потери”.

Э. Деминг

Эксперимент с красными бусинами

Dr. Deming"s Red Bead Experiment

Эксперимент с красными бусинами Деминг начал проводить в своих первых лекциях для японцев в 1950 г., чтобы продемонстрировать разницу между общими и особыми причинами вариаций. В течение многих лет Деминг использовал для экспериментов с красными бусинами одни и те же приспособления. Этими основными приспособлениями служат: коробка с белыми и красными бусинами в пропорции примерно 4:1 и прямоугольный кусок пластика» дерева, металла и т.п., обычно называемый лопаткой, в котором сделано 50 вертикальных углублений. Выборка из 50 бусинок достигается путем погружения лопатки в коробку.

Иточник описания эксперимента: Нив Генри Р. "Пространство доктора Деминга: Принципы построения устойчивого бизнеса" Пер. с англ. - М.: Альпина Бизнес Букс, 2005, стр. 110-115.

Цветные иллюстрации и видео - С. Григорьев.

Основная форма эксперимента с красными бусинами, которая демонстрировалась на четырехдневных семинарах, оставалась относительно неизменной на протяжении нескольких лет.

Мастером из аудитории приглашаются добровольцы:

  • шесть заинтересованных рабочих (им не требуется каких-либо специальных навыков: они пройдут обучение и должны будут выполнять все требования без вопросов и жалоб);
  • два младших инспектора (им достаточно уметь считать до двадцати);
  • главный инспектор (должен уметь сравнить два числа на предмет их равенства или неравенства и уметь говорить громко и четко);
  • регистратор (должен уметь аккуратно писать и производить простые арифметические действия).

Рабочий день для каждого рабочего - это процесс взятия выборки (50 бусинок) из коробки с помощью лопатки. Белые бусины - это хороший продукт, приемлемый для потребителя. Красные бусины - продукт неприемлемый. В соответствии с требованиями мастера или пожеланиями высшего руководства ставится задача не допускать попадания более одной-трех красных бусин. Рабочие обучаются мастером (Демингом), который дает точные инструкции о том, как должна проводиться работа: как нужно смешивать бусинки, каковы должны быть направления, расстояния, углы и уровень помешивания при пользовании лопаткой. Для минимизации вариаций процедуру нужно стандартизировать и регламентировать.

Рабочие должны очень внимательно следовать всем инструкциям, ведь от результатов их труда зависит, останутся ли они на работе.

"Запомните, каждый ваш рабочий день может быть последним в зависимости от того, как вы работаете. Я надеюсь, вы получите удовольствие от своей работы!"

В процессе контроля участвует много персонала, однако он весьма эффективен. Каждый рабочий приносит выполненную дневную работу к первому младшему инспектору, который молча пересчитывает и записывает число красных бусинок, а затем идет ко второму инспектору, который делает то же самое. Главный инспектор, также сохраняя молчание, сравнивает эти два счета. Если они различаются, значит, закралась ошибка! Еще больше заставляет задуматься тот факт, что даже если оба счета совпадают, они тем не менее могут быть ошибочными. Однако процедура такова, что в случае ошибки инспекторы, по-прежнему независимо друг от друга, должны пересчитывать результат. Когда показания счета совпадают, главный инспектор объявляет результат и регистратор заносит его на слайд, проецируемый на расположенный выше экран. Рабочий возвращает свои бусинки в коробку - его рабочий день завершен.

Работа продолжается в течение четырех дней. Всего получается 24 результата. Мастер постоянно их комментирует. Он хвалит Эла за снижение количества красных бусинок до четырех, и аудитория рукоплещет ему. Он ругает Одри за получение шестнадцати красных, и аудитория нервно смеется. Как это у Одри может быть в четыре раза больше дефектных бусинок, если только она не беспечна и не ленива? Никто из остальных работников также не может оставаться спокойным, ведь если Эл мог сделать четыре, то и каждый может это сделать. Эл - несомненный «рабочий дня», и он получит премию. Но на следующий день у Эла находят девять красных бусинок, поскольку он чересчур успокоился. Одри приносит десять: она плохо начала, но теперь начинает исправляться, в особенности после серьезного разговора с мастером в конце первого дня.

"Стоп! Остановить линию! Бен только что сделал семнадцать красных! Давайте проведем собрание и постараемся понять, в чем причина плохой работы. Такого рода работа может привести к закрытию предприятия".

В конце второго дня мастер проводит серьезный разговор с рабочими. По мере того как люди осваиваются и становятся более опытными, их результаты должны улучшаться.

Вместо этого вслед за 54 красными бусинками, полученными в первый день, на второй день их было получено целых 65. Неужели рабочие не понимают своей задачи? Задача состоит в том, чтобы получать белые бусины, а не красные. Будущее выглядит довольно мрачно. Никто не достиг цели. Они должны стараться работать лучше.

Подавленные рабочие возвращаются к работе. И вдруг возникают два проблеска: Одри, продолжая улучшать свои результаты, достигает семи красных бусинок; на верном пути и Бен, повторивший успех первого дня своей работы - девять красных! Однако все остальные работают хуже. Общее число красных бусинок вновь поднимается и достигает 67. День завершается без успехов, как и предыдущие. Мастер говорит рабочим, что, если существенных улучшений не произойдет, предприятие придется закрыть.

Начинается четвертый день. С облегчением мы обнаруживаем, что дела пошли лучше благодаря Одри, которая теперь производит только шесть красных бусинок*. Но в целом день заканчивается 58 красными, что попрежнему хуже, чем в первый день.

Вот все результаты, полученные на данный момент:


На этой стадии мастер решает призвать на помощь известное великое достижение менеджмента - сохранить предприятие, оставив только лучших рабочих. Он увольняет Бена, Кэрол и Джона, трех рабочих, которые сделали 40 и более красных бусинок за четыре дня, и оставляет Одри, Эла и Эда, выплачивая им премию и заставляя работать в две смены.

Неудивительно, что это не дает результата.

Наблюдая эксперимент с красными бусинами, мы получаем редкое преимущество: мы хорошо понимаем систему и можем быть уверены, что она управляема. Как только мы осознаем это, нам становится ясно, насколько бессмысленны все действия мастера (или кого-либо еще) с целью воздействия на результаты, которые предположительно зависят от рабочих, а на самом деле полностью обусловлены существующей системой. Все эти поступки были реакцией на чисто случайные вариации.

Однако предположим, что у нас отсутствует понимание системы. Что нам делать тогда? Тогда нам нужно было бы нанести данные на контрольную карту и дать ей возможность рассказать нам о поведении процесса.

Центральная линия на карте соответствует среднему показанию, т.е. 244/24 = 10,2, поэтому расчет 1σ (сигма) дает:

Отсюда для положения верхней и нижней контрольных границ имеем:

10,2 + (3 х 2,8) = 18,6 » средняя линия + 3σ

10,2 - (3 х 2,8) = 1,8 » соответственно, средняя линия - 3σ

Примечание С. Григорьев: Для построения контрольной карты выбран тип np-карта альтернативных данных. Правила построения и формулы расчета контрольных границ смотрите описание в ГОСТ Р ИСО 7870-1-2011 (ISO 7870-1:2007), ГОСТ Р ИСО 7880-2-2015 (ISO 7870-2:2013) - Статистические методы. Контрольные карты Шухарта. Если потребуются дополнительные пояснения, буду рад их дать по запросу.

Контрольная карта показана на рисунке, ниже.

Эта карта подтверждает то, что мы и предполагали: процесс находится в статистически управляемом состоянии. Вариации вызываются системой. Рабочие беспомощны: они могут выдать только то, что дает система. Система стабильна и предсказуема.

Если мы проведем эксперимент завтра, или послезавтра, или на следующей неделе, то, по всей видимости, получим похожий разброс результатов.



Рис. Контрольная np-карта эксперимента с красными бусинами, проведенного 02.04.2011г. на обучающем семинаре Григорьевым С. Смотрите видео (8 минут).


Рис. Сравнение контрольных np-карт экспериментов с красными бусинами, проведенных в 1983г. Э. Демингом и в 2011г. С. Григорьевым. Обратите внимание, что в эксперименте С. Григорьева использовались другая лопатка, другие бусины, другие люди (рабочие), немного модифицирован сам процесс, временной промежуток 28 лет. Но основной системный фактор - отношение красных бусин к белым, оставался прежним. Можно было бы продлить контрольные пределы из эксперимента проведенного Демингом на 30 лет вперед и они предсказывали бы поведение процесса с достаточной точностью. О чем вам это говорит?

Участники семинаров видят удовольствие, получаемое от хороших результатов, и огорчение от плохих, не зависящих от ругательств и критики мастера. Они видят тенденцию (например, тенденцию Одри к значительному улучшению результатов), видят относительно однородные результаты (как, например, у Джона) и переменчивые (как у Бена). Они видят и слышат жалобы и стенания мастера, когда его бесполезные и бессмысленные указания не выполняются буквально. Они видят, как рабочих сравнивают друг с другом, в то время как на самом деле рабочие не имеют возможности воздействовать на получение результатов: результаты полностью определяются системой, внутри которой они работают. А еще участники семинара видят, как рабочие теряют свою работу без какой-либо вины с их стороны, в то время как другие получаю премию, не имея особых заслуг (кроме той, что система относится к ним более лояльно).

Деминг указывает на некоторые очевидные особенности эксперимента плюс на несколько других, менее очевидных. Так, накопленные средние значения в конце каждого из четырех дней соответственно составляют:


Деминг спрашивает у аудитории, на каком значении установится среднее, если эксперимент продолжать дальше. Поскольку отношение белых и красных бусинок 4:1, для тех, кто знакомы с законами математики, ясно, что ответ должен быть 10,0. Но это оказывается не так. Это было бы правильным, если бы выборка производилась по методу случайных чисел. Но в действительности она осуществляется путем погружения лопатки в коробку. Это механическая выборка, а не случайная, для которой применимы математические законы. В качестве дополнительных доказательств Деминг приводит результаты, полученные при использовании в течение ряда лет четырех различных лопаток. Как минимум для двух из них традиционный статистик оценил бы результаты как «статистически значимо» отличающиеся от 10,0. А какой же тип выборки мы осуществляем в производственных процессах? Механический или случайный? В какое положение все это ставит тех, кто зависит только от стандартной статистической теории в приложении к промышленности?

Не все в этом эксперименте дает пример того, как не надо делать. В том, как организован процесс контроля, имеется важный положительный аспект.

На первый взгляд, он противоречит одной из идей, которую Деминг иногда рассматривает на своих семинарах, - и в процессе контроля имеет место разделение ответственности. На самом деле вклады каждого из контролеров в результат независимы один от другого; риск разделения ответственности здесь сведен к риску консенсуса.

Как в эксперименте с воронкой, так и в эксперименте с красными бусинами возникает естественный вопрос: что же можно сделать для улучшения дел? Мы уже знаем ответ. Так как рассматриваемая система находится в состоянии статистического контроля, настоящих улучшений можно достигнуть только путем ее реального изменения. Их не получить воздействием на выходы, т.е. результаты работы системы: воздействие на выходы годится только в присутствии особых причин вариаций. Воздействие на результаты - это как раз то, на что нацелены правила 2, 3 и 4 в эксперименте с воронкой, на это же направлены и все эмоциональные восклицания мастера в данном эксперименте.

Воздействия на систему с целью устранения общих причин вариаций - обычно более трудная задача, чем действия по устранению особых причин. Так, в эксперименте с воронкой сама воронка может быть опущена или использована более мягкая ткань для покрытия стола, с тем чтобы погасить часть движений шарика после его падения. В эксперименте с красными бусинами каким-то образом доля красных бусинок в коробке должна быть уменьшена - путем введения улучшений на предшествующих стадиях производственного процесса или при поставках исходных материалов либо того и другого вместе.

Деминг ссылается на эксперимент с красными бусинами как «донельзя простой». Так и есть. Однако, как и в случае эксперимента с воронкой, передаваемые при этом идеи оказываются вовсе не такими уж простыми.

Проводя обучающие семинары, демонстрируя на них эксперименты, которые демонстрировал Э. Деминг на своих четырехдневных семинарах, я сталкиваюсь с разрывом между знаниями, полученными в период обучения и последующим применением менеджментом теории управления системами Э. Деминга на практике. Одной из главных причин такого обстоятельства вижу неготовность многих руководителей к полномасштабному изменению стиля управления, а без этого преобразование невозможно.

Генри Нив примерно оценивает в четверть миллиона человек присутствовавших на знаменитых четырехдневных семинарах Э. Деминга в период между 1980 и 1993 годами.

В интервью Э. Деминга изданию The Washington Post , январь 1984:

Вопрос:

"Вы были очень успешными в привлечении людей на эти семинары. Разве это не обнадеживает вас?"

Доктор Э. Деминг:

"Я не знаю, почему это должно обнадеживать. Я хочу видеть, что они собираются делать. Это займет годы".

Смотрите оригинальное видео эксперимента с красными бусинками, проведенного Э. Демингом в последние годы своей жизни, видео лекции Lessons Of The Red Beads (Уроки красных бусинок) и интервью Э. Деминга.

Red Bead Experiment with Dr. W. Edwards Deming

Lessons Of The Red Beads

Lessons from the Red Bead Experiment

Невероятные факты

Мысленные эксперименты или гипотезы, часто напоминающие загадки, используются философами и учеными, чтобы объяснить очень сложные идеи.

Их используют в таких областях, как философия и теоретическая физика, когда провести физический эксперимент невозможно.

Они служат хорошей пищей для размышлений, и заставляют пересмотреть то, что мы считаем, как данное.

Вот одни из самых известных мысленных экспериментов.


Научные эксперименты

1. Обезьяна и охотник

"Охотник следит за обезьяной на дереве, прицеливается и стреляет. В момент, когда пуля вылетает из оружия, обезьяна падает с ветки на землю. Как должен прицелиться охотник, чтобы попасть в обезьяну ?

1. Целится в обезьяну

2. Целится выше головы обезьяны

3. Целится ниже обезьяны

Результат может быть неожиданным. Гравитация действует на обезьяну и пулю с той же скоростью, поэтому независимо от того, как быстро летит пуля (учитывая сопротивление воздуха и другие факторы), охотник должен целиться в обезьяну.

2. Пушечное ядро Ньютона

В этом мысленном эксперименте, нужно представить себе пушку, находящуюся на очень высокой горе, которая выстреливает свое ядро под углом 90 градусов к Земле .

Диаграмма показывает несколько возможных траекторий полета пушечного ядра, в зависимости от того, как быстро оно будет лететь в момент запуска.

Если оно будет двигаться слишком медленно, то, в конце концов, упадет вниз на Землю.

Если же оно будет очень быстрым, оно может освободиться от гравитации Земли и направиться в космос. Если оно достигнет средней скорости, то будет двигаться по орбите Земли .

Этот эксперимент сыграл большую роль в изучении гравитации, заложив основу для создания спутников и космических полетов.

3. Загадка токсина Кавки

"Эксцентричный миллиардер предлагает вам флакон с токсичным веществом, который, если вы его выпьете, вызовет у вас мучительную боль на один день, но не будет угрожать жизни, и не будет иметь каких-либо долговременных последствий.

Миллиардер заплатит вам 1 миллион долларов на следующее утро, если сегодня в полночь вы намереваетесь выпить токсичное вещество завтра в полдень . При этом, вам не обязательно выпить токсин, чтобы получить деньги. Деньги уже будут на вашем счету за несколько часов до того, как настанет время его выпить. Но … в случае если вам это удастся.

Все что нужно сделать, это намереваться сегодня в полночь выпить токсин завтра в полдень. Вы можете передумать после того, как получите деньги и не пить токсин. Вопрос состоит вот в чем: можно ли намереваться выпить токсичное вещество ?

Согласно американскому философу Грегори Кавке, было бы очень сложно, практически невозможно, намереваться сделать что-то, если мы не намереваемся сделать это. Рациональный человек знает, что он не выпьет яд, и потому не может намереваться его выпить.

4. Загадка слепого

Эту загадку задал ирландский философ Ульям Молинье (William Molyneux) британскому мыслителю Джону Локку.

Представьте себе, что слепой с рождения человек, который научился с помощью прикосновений различать между кубом и шаром, внезапно прозрел.

Сможет ли он с помощью зрения, до того как коснется объектов, определить, что есть куб, а что шар ?

Ответ: Нет. Несмотря на то, что он получил опыт, используя осязание, это не повлияет на его зрение.

Ответ на этот вопрос сможет решить одну из фундаментальных проблем человеческого разума.

Так, например, эмпиристы считают, что человек рождается как "чистая доска" и становится суммой всего накопленного опыта. Напротив нативисты возражали, что наш разум с самого начала содержит представления , которые потом активизируются зрением, звуками и прикосновениями.

Если бы слепой человек внезапно прозрел и смог сразу различить, где куб и где шар, это означало бы, что знания являются врожденными.

Несколько лет назад профессор Паван Синха (Pawan Sinha) из Массачусесткого технологического института провел исследование на пациентах, которым вернули зрение. Результаты подтвердили предположение Молинье.

Эксперименты (видео)

5. Парадокс близнецов

Эйнштейн так сформулировал эту проблему:

"Представьте себе двух близнецов Джо и Фрэнка. Джо домосед, а Фрэнк любит путешествовать.

На свое 20-летие, один из них отправляется на космическом корабле в космос, путешествуя со скоростью света . Его путешествие на этой скорости занимает 5 лет, и он возвращается, когда ему уже 30 лет. Вернувшись домой, он узнает, что на Земле прошло 50 лет. Его брат близнец сильно состарился и ему уже 70 лет.

Тут вступает в силу закон относительности, согласно которому, чем быстрее вы движетесь в космосе, тем медленнее вы продвигаетесь во времени .


6. Квантовое бессмертие и квантовое самоубийство

В этом мысленном эксперименте, предложенном американским теоретиком Максом Тегмароком, участник направляет на себя ружье, которое снабжено механизмом, измеряющим вращение квантовой частицы.

В зависимости от измерений, ружье может либо выстрелить, либо нет. Этот гипотетический процесс стал известен, как квантовое самоубийство .

Если верна многомировая интерпретация, то есть существование параллельных Вселенных, то Вселенная расщепится на две, в одной из которых участник будет жить, а в другой он умрет .

Такое разветвление будет происходить каждый раз при нажатии на курок. Сколько бы выстрелов не произошло, в одном из миров всегда останется версия участника, которая выживет. Таким образом, он приобретет квантовое бессмертие.


Эксперименты ученых

7. Бесконечные обезьяны

Этот эксперимент, который известен, как "теорема бесконечных обезьян ", утверждает что, если бесконечное количество обезьян случайным образом нажмут на клавиши бесконечного числа пишущих машинок, в какой-то момент они совершенно точно создадут произведения Шекспира.

Основная идея состоит в том, что бесконечное количество действующих сил и бесконечное время случайным образом создадут все и вся . Теорема является одним из лучших способов продемонстрировать природу бесконечности.

В 2011 году американский программист Джесси Андерсон (Jesse Anderson) решил проверить эту теорему с помощью виртуальных обезьян. Он создал несколько миллионов "виртуальных обезьян " - специальные программы, которые вводят случайную последовательность букв. Когда последовательность букв совпадает со словом из Шекспировского произведения, оно выделяется. Таким образом, почти через месяц ему удалось воспроизвести поэму Шекспира "Жалоба влюбленной".

8. Кот Шредингера

Парадокс кота Шредингера связан с квантовой механикой и был впервые предложен физиком Эрвином Шредингером. Эксперимент состоит в том, что кот, заперт внутри коробки вместе с радиоактивным элементом и пузырьком смертельного яда . Шанс того, что радиоактивный элемент распадется в течение часа, составляет 50/50. Если это произойдет, молот, прикрепленный к счетчику Гейгера, разобьет пузырек, выпустит яд и убьет кота.

Так как существуют равные шансы того, что это случится, или не случится, то до того, как коробку откроют, кот может быть одновременно и жив и мертв.

Суть состоит в том, что, так как никто не наблюдает за тем, что происходит, кот может существовать в разных состояниях . Это похоже на известную загадку, которая звучит так: "Если дерево упало в лесу, и никто этого не слышит, издает ли оно звук?"

Кот Шредингера показывает необычную природу квантовой механики, согласно которой некоторые частицы настолько малы, что мы не можем их измерить, не изменив их . До того, как мы их измерим, они существуют в суперпозиции – то есть в любом состоянии одновременно.


Эксперимент науки

9. Мозг в колбе

Этот мысленный эксперимент пронизывает многие области, начиная от когнитивной науки до философии и популярной культуры.

Суть эксперимента состоит в том, что некий ученый извлек ваш мозг из тела и помесил его в колбу с питательным раствором . К мозгу подключили электроды и подсоединили к компьютеру, который генерирует изображения и ощущения.

Так как вся информация о мире проходит через мозг, этот компьютер может симулировать ваш опыт.

Вопрос: Если бы это было возможно, как бы вы могли действительно доказать, что мир вокруг вас реален , а не является симуляцией компьютера?

Все это похоже на сюжет фильмы "Матрица", на который в частности повлиял эксперимент "мозг в колбе".

По сути, этот эксперимент заставляет вас задуматься о том, что значит быть человеком. Так известный философ Рене Декарт задавался вопросом, можно ли действительно доказать, что все ощущения принадлежат нам самим, а не являются иллюзией, вызванной "злым демоном". Он отразил это в своем знаменитом высказывании "Cogito ergo sum"("Я мыслю, и значит, существую"). Однако в данном случае мозг, подключенный к электродам, тоже может думать.

10. Китайская комната

Китайская комната – еще один известный мысленный эксперимент, предложенный в 1980-х годах американским философом Джоном Серлем.

Представьте, что человека, говорящего на английском языке заперли в комнате, в которой есть небольшая щель для писем. У человека есть корзины с китайскими иероглифами и учебник с инструкциями на английском языке , который поможет перевести с китайского. Через щель в двери ему передают листки бумаги с набором китайских иероглифов. Мужчина может использовать учебник, чтобы перевести фразы и отправить ответ на китайском языке.

Хотя сам он ни слова не говорит на китайском, он может убедить находящихся снаружи, что в совершенстве владеет китайским.

Этот эксперимент был предложен с целью опровергнуть предположение, что компьютеры или другие виды искусственного интеллекта могут думать и понимать . Компьютеры не понимают информацию, которая им дается, но у них может быть программа, которая создает видимость человеческого интеллекта.

Эксперимент с красными бусинами Деминг начал проводить в своих первых лекциях для японцев в 1950 г., чтобы продемонстрировать разницу между общими и особыми причинами вариаций. В течение многих лет Деминг использовал для экспериментов с красными бусинами одни и те же приспособления. Этими основными приспособлениями служат: коробка с белыми и красными бусинами в пропорции примерно 4: 1 и прямоугольный кусок пластика, дерева, металла и т.п., обычно называемый лопаткой, в котором сделано 50 вертикальных углублений. Выборка из 50 бусинок достигается путем погружения лопатки в коробку. (Замечание для статистиков: я намеренно не употребляю термин «случайная выборка», даже с учетом того, что бусины могут быть хорошо перемешаны, прежде чем в них погрузят лопатку.)

Основная форма эксперимента с красными бусинами, которая демонстрируется на четырехдневных семинарах, остается относительно неизменной на протяжении нескольких лет. Из аудитории приглашаются добровольцы:

шесть заинтересованных рабочих (им не требуется каких-либо специальных навыков: они пройдут обучение и должны будут выполнять все требования без вопросов и жалоб);

два младших инспектора (им достаточно уметь считать до двадцати);

главный инспектор (должен уметь сравнить два числа на предмет их равенства или неравенства и уметь говорить громко и четко);

регистратор (должен уметь аккуратно писать и производить простые арифметические действия).

Рабочий день для каждого рабочего - это процесс взятия выборки (50 бусинок) из коробки с помощью лопатки. Белые бусины - это хороший продукт, приемлемый для потребителя. Красные бусины - продукт непри

емлемый. В соответствии с требованиями мастера или пожеланиями высшего руководства ставится задача не допускать попадания более одной-трех красных бусин. Рабочие обучаются мастером (Демингом), который дает точные инструкции о том, как должна проводиться работа: как нужно смешивать бусинки, каковы должны быть направления, расстояния, углы и уровень помешивания при пользовании лопаткой. Для минимизации вариаций процедуру нужно стандартизировать и регламентировать.

Рабочие должны очень внимательно следовать всем инструкциям, ведь от результатов их труда зависит, останутся ли они на работе.

«Запомните, каждый ваш рабочий день может быть последним в зависимости от того, как вы работаете. Я надеюсь, вы получите удовольствие от своей работы!»

В процессе контроля участвует много персонала, однако он весьма эффективен. Каждый рабочий приносит выполненную дневную работу к первому младшему инспектору, который молча пересчитывает и записывает число красных бусинок, а затем идет ко второму инспектору, который делает то же самое. Главный инспектор, также сохраняя молчание, сравнивает эти два счета. Если они различаются, значит, закралась ошибка! Еще больше заставляет задуматься тот факт, что даже если оба счета совпадают, они тем не менее могут быть ошибочными. Однако процедура такова, что в случае ошибки инспекторы, по-прежнему независимо друг от друга, должны пересчитывать результат. Когда показания счета совпадают, главный инспектор объявляет результат и регистратор заносит его на слайд, проецируемый на расположенный выше экран.

Рабочий возвращает свои бусинки в коробку - его рабочий день завершен.

Работа продолжается в течение четырех дней. Всего получается 24 результата. Мастер постоянно их комментирует. Он хвалит Эла за снижение количества красных бусинок до четырех, и аудитория рукоплещет ему. Он ругает Одри за получение шестнадцати красных, и аудитория нервно смеется. Как это у Одри может быть в четыре раза больше дефектных бусинок, если только она не беспечна и не ленива? Никто из остальных работников также не может оставаться спокойным, ведь если Эл мог сделать четыре, то и каждый может это сделать. Эл - несомненный «рабочий дня», и он получит премию. Но на следующий день у Эла находят девять красных бусинок, поскольку он чересчур успокоился. Одри приносит десять: она плохо начала, но теперь начинает исправляться, в особенности после серьезного разговора с мастером в конце первого дня. Стоп! Остановить линию! Бен только что сделал семнадцать красных! Давайте проведем собрание и постараемся понять, в чем причина плохой работы. Такого рода работа может привести к закрытию предприятия. В конце второго дня мастер

Организация как система

проводит серьезный разговор с рабочими. По мере того как люди осваиваются и становятся более опытными, их результаты должны улучшаться. Вместо этого вслед за 54 красными бусинками, полученными в первый день, на второй день их было получено целых 65. Неужели рабочие не понимают своей задачи? Задача состоит в том, чтобы получать белые бусины, а не красные. Будущее выглядит довольно мрачно. Никто не достиг цели. Они должны стараться работать лучше.

Подавленные рабочие возвращаются к работе. И вдруг возникают два проблеска: Одри, продолжая улучшать свои результаты, достигает семи красных бусинок; на верном пути и Бен, повторивший успех первого дня своей работы - девять красных! Однако все остальные работают хуже. Общее число красных бусинок вновь поднимается и достигает 67. День завершается без успехов, как и предыдущие. Мастер говорит рабочим, что, если существенных улучшений не произойдет, предприятие придется закрыть.

Начинается четвертый день. С облегчением мы обнаруживаем, что дела пошли лучше благодаря Одри, которая теперь производит только шесть красных бусинок*. Но в целом день заканчивается 58 красными, что по- прежнему хуже, чем в первый день.

Вот все результаты, полученные на данный момент: День 1 День 2 День 3 День 4 Сумма Одри 16 10 7 6 39 Джон 9 11 12 10 42 Эл 4 9 13 11 37 Кэрол 7 11 14 11 43 Бен 9 17 9 13 48 Эд 9 7 12 7 35 Сумма за день Итого 54 65 67 58 244 На этой стадии мастер решает призвать на помощь известное великое достижение менеджмента - сохранить предприятие, оставив только лучших рабочих. Он увольняет Бена, Кэрол и Джона, трех рабочих, которые сделали 40 и более красных бусинок за четыре дня, и оставляет Одри, Эла и Эда, выплачивая им премию и заставляя работать в две смены.

Неудивительно, что это не дает результата.

* Примечание для традиционных статистиков: при стандартной нуль-гипотезе, и при том, что Одри получила четыре различных оценки, шанс, что эти оценки становились лучше день ото дня, равен 1/4! = 1/24 = 0,024. Это значимый результат больше чем на 5 %-ном уровне значимости! - Прим. авт.

Глава 6. Эксперимент с красными бусинами

Наблюдая эксперимент с красными бусинами, мы получаем редкое преимущество: мы хорошо понимаем систему и можем быть уверены, что она управляема. Как только мы осознаем это, нам становится ясно, насколько бессмысленны все действия мастера (или кого-либо еще) с целью воздействия на результаты, которые предположительно зависят от рабочих, а на самом деле полностью обусловлены существующей системой. Все эти поступки были реакцией на чисто случайные вариации.

Однако предположим, что у нас отсутствует понимание системы. Что нам делать тогда? Тогда нам нужно было бы нанести данные на контрольную карту и дать ей возможность рассказать нам о поведении процесса. Центральная линия на карте соответствует среднему показанию, т.е. 244/24 = 10,2, поэтому расчет дает:

Отсюда для положения верхней и нижней контрольных границ имеем:

10,2 + (3 х 2,8) = 18,6 и 10,2 - (3 х 2,8) = 1,8

соответственно (аналогичные расчеты см.: «Выхода из кризиса», стр. 304). Контрольная карта показана на рисунке 17.

Эта карта подтверждает то, что мы и предполагали: процесс находится в статистически управляемом состоянии. Вариации вызываются системой. Рабочие беспомощны: они могут выдать только то, что дает система. Система стабильна и предсказуема. Если мы проведем эксперимент завтра, или послезавтра, или на следующей неделе, то, по всей видимости, получим похожий разброс результатов.

Центральная

Рис. 17. Контрольная карта данных эксперимента с красными бусинами

Организация как система

Участники семинара, настроенные на активное восприятие выводов, вытекающих из эксперимента с красными бусинами, могут сделать много интересных наблюдений еще до того, как Деминг начнет подведение итогов. Они видят удовольствие, получаемое от хороших результатов, и огорчение от плохих, не зависящих от ругательств и критики мастера. Они видят тенденцию (например, тенденцию Одри к значительному улучшению результатов), видят относительно однородные результаты (как, например, у Джона) и переменчивые (как у Бена). Они видят и слышат жалобы и стенания мастера, когда его бесполезные и бессмысленные указания не выполняются буквально. Они видят, как рабочих сравнивают друг с другом, в то время как на самом деле рабочие не имеют возможности воздействовать на получение результатов: результаты полностью определяются системой, внутри которой они работают. А еще участники семинара видят, как рабочие теряют свою работу без какой-либо вины с их стороны, в то время как другие получаю премию, не имея особых заслуг (кроме той, что система относится к ним более лояльно).

Деминг указывает на некоторые очевидные особенности эксперимента плюс на несколько других, менее очевидных. Так, накопленные средние значения в конце каждого из четырех дней соответственно составляют:

Деминг спрашивает у аудитории, на каком значении установится среднее, если эксперимент продолжать дальше. Поскольку отношение белых и красных бусинок 4:1, для тех, кто знакомы с законами математики, ясно, что ответ должен быть 10,0. Но это оказывается не так. Это было бы правильным, если бы выборка производилась по методу случайных чисел. Но в действительности она осуществляется путем погружения лопатки в коробку. Это механическая выборка, а не случайная, для которой применимы математические законы. В качестве дополнительных доказательств Деминг приводит результаты, полученные при использовании в течение ряда лет четырех различных лопаток. Как минимум для двух из них традиционный статистик оценил бы результаты как «статистически значимо» отличающиеся от 10,0. А какой же тип выборки мы осуществляем в производственных процессах? Механический или случайный? В какое положение все это ставит тех, кто зависит только от стандартной статистической теории в приложении к промышленности?

Не все в этом эксперименте дает пример того, как не надо делать. В том, как организован процесс контроля, имеется важный положительный аспект. На первый взгляд, он противоречит одной из идей, которую Деминг иногда

Глава 6. Эксперимент с красными бусинами

рассматривает на своих семинарах, - и в процессе контроля имеет место разделение ответственности. На самом деле вклады каждого из контролеров в результат независимы один от другого; риск разделения ответственности здесь сведен к риску консенсуса. Этот вопрос обсуждается более подробно в главе 21 (см. также правило 4 в экспериментах с воронкой и мишенью).

Как в эксперименте с воронкой (см. главу 5), так и в эксперименте с красными бусинами возникает естественный вопрос: что же можно сделать для улучшения дел? Мы уже знаем ответ. Так как рассматриваемая система находится в состоянии статистического контроля, настоящих улучшений можно достигнуть только путем ее реального изменения. Их не получить воздействием на выходы, т.е. результаты работы системы: воздействие на выходы годится только в присутствии особых причин вариаций. Воздействие на результаты - это как раз то, на что нацелены правила 2, 3 и 4 в эксперименте с воронкой, на это же направлены и все эмоциональные восклицания мастера в данном эксперименте.

Воздействия на систему с целью устранения общих причин вариаций - обычно более трудная задача, чем действия по устранению особых причин. Так, в эксперименте с воронкой сама воронка может быть опущена или использована более мягкая ткань для покрытия стола, с тем чтобы погасить часть движений шарика после его падения. В эксперименте с красными бусинами каким-то образом доля красных бусинок в коробке должна быть уменьшена - путем введения улучшений на предшествующих стадиях производственного процесса или при поставках исходных материалов либо того и другого вместе.

Деминг ссылается на эксперимент с красными бусинами как «донельзя простой». Так и есть. Однако, как и в случае эксперимента с воронкой, передаваемые при этом идеи оказываются вовсе не такими уж простыми.



Загрузка...

Реклама