emou.ru

Сформулируйте закон сохранения момента количества движения. Закон сохранения количества движения и уравнение движения. Уравнения для скорости (сохранения количества движения) выведем сначала для идеальной жидкости (без вязкости). Закон сохранения импульса

Рассмотрим наиболее общие законы сохранения, которым подчиняется весь материальный мир и которые вводят в физику ряд фундаментальных понятий: энергия, количество движения (импульс), момент импульса, заряд.

Закон сохранения импульса

Как известно, количеством движения, или импульсом, называют произведение скорости на массу движущегося тела: p = mv Эта физическая величина позволяет найти изменение движения тела за какой‑нибудь определенный промежуток времени. Для решения этой задачи следовало бы применять второй закон Ньютона бесчисленное число раз, во все промежуточные моменты времени. Закон сохранения количества движения (импульса) можно получить, используя второй и третий законы Ньютона. Если рассматривать две (или более) материальные точки (тела), взаимодействующие между собой и образующие систему, изолированную от действия внешних сил, то за время движения импульсы каждой точки (тела) могут изменяться, но общий импульс системы должен оставаться неизменным:

m 1 v +m 1 v 2 = const.

Взаимодействующие тела обмениваются импульсами при сохранении общего импульса.

В общем случае получаем:

где P Σ – общий, суммарный импульс системы,m i v i – импульсы отдельных взаимодействующих частей системы. Сформулируем закон сохранения импульса:

Если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.

Пример действия закона сохранения импульса можно рассмотреть на процессе взаимодействия лодки с человеком, которая уткнулась носом в берег, а человек в лодке быстро идет из кормы в нос со скоростью v 1 . В этом случае лодка отойдет от берега со скоростьюv 2 :

Аналогичный пример можно привести со снарядом, который разорвался в воздухе на несколько частей. Векторная сумма импульсов всех осколков равна импульсу снаряда до разрыва.

Закон сохранения момента импульса

Вращение твердых тел удобно характеризовать физической величиной, которая называется моментом импульса.

При вращении твердого тела вокруг неподвижной оси каждая отдельная частица тела движется по окружности радиусом r i с какой‑то линейной скоростьюv i . Скоростьv i и импульсp = m i v i перпендикулярны радиусу r i . Произведение импульсаp = m i v i на радиусr i называется моментом импульса частицы:

L i = m i v i r i = P i r i ·

Момент импульса всего тела:

Если заменить линейную скорость угловой щ (v i = ωr i), то

где J = mr 2 – момент инерции.

Момент импульса замкнутой системы не изменяется во времени, то есть L = const и Jω = const.

При этом моменты импульса отдельных частиц вращающегося тела могут как угодно изменяться, однако общий момент импульса (сумма моментов импульса отдельных частей тела) остается постоянным. Продемонстрировать закон сохранения момента импульса можно, наблюдая вращение фигуриста на коньках с руками, вытянутыми в стороны, и с руками, поднятыми над головой. Так как Jω = const, то во втором случае момент инерции J уменьшается, значит, при этом должна возрасти угловая скорость щ, так как Jω = const.

Закон сохранения энергии

Энергия – это универсальная мера различных форм движения и взаимодействия. Энергия, отданная одним телом другому, всегда равна энергии, полученной другим телом. Для количественной оценки процесса обмена энергией между взаимодействующими телами в механике вводится понятие работы силы, вызывающей движение.

Кинетическая энергия механической системы – это энергия механического движения этой системы. Сила, вызывающая движение тела, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Как известно, тело массой m, движущееся со скоростьюv, обладает кинетической энергиейE =mv 2 /2.

Потенциальная энергия – это механическая энергия системы тел, которые взаимодействуют посредством силовых полей, например посредством гравитационных сил. Работа, совершаемая этими силами, при перемещении тела из одного положения в другое не зависит от траектории движения, а зависит только от начального и конечного положения тела в силовом поле.

Такие силовые поля называют потенциальными, а силы, действующие в них, – консервативными. Гравитационные силы являются консервативными силами, а потенциальная энергия тела массойm, поднятого на высотуh над поверхностью Земли, равна

Е пот = mgh,

где g – ускорение свободного падения.

Полная механическая энергия равна сумме кинетической и потенциальной энергии:

E = Е кин + Е пот

Закон сохранения механической энергии (1686 г., Лейбниц) гласит, что в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется неизменной во времени. При этом могут происходить превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах.

Существуют еще один вид систем, в которых механическая энергия может уменьшаться за счет преобразования в другие формы энергии. Например, при движении системы с трением часть механической энергии уменьшается за счет трения. Такие системы называются диссипативными, то есть системами, рассеивающими механическую энергию. В таких системах закон сохранения полной механической энергии несправедлив. Однако при уменьшении механической энергии всегда возникает эквивалентное этому уменьшению количество энергии другого вида. Таким образом,энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. Здесь проявляется свойство неуничтожимости материи и ее движения.

Закон сохранения количества движения

1. Если сумма всех внешних сил, действующих на механическую систему, равна нулю, то вектор количества движения системы есть величина постоянная по модулю и направлению .

Если, то, следовательно.

2. Если сумма проекций всех действующих сил на какую-либо ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная .

Если, то, следовательно.


Лекция 11
ГЛАВНЫЙ МОМЕНТ КОЛИЧЕСТВ ДВИЖЕНИЯ (кинетический момент) системы
относительно центра и оси

Понятие о моменте количества движения точки.
Теорема об изменении момента количества движения точки.
Кинетический момент. Теорема об изменении кинетического
момента системы при ее движении по отношению к центру масс

Моментом количества движения точки относительно некоторого центра О называется векторная величина, определяемая равенством:

где – радиус-вектор движущейся точки. Вектор направлен перпендикулярно плоскости, проходящей через и центр О , а модуль равен,

где h – кратчайшее расстояние от центра до линии действия вектора скорости.

Момент количества движения (МКД) точки относительно какой-либо оси Оz , проходящей через центр О, равен проекции вектора на эту плоскость :

Продифференцируем обе части уравнения (1). Для правой части

Выражение как векторное произведение двух параллельных векторов. Учитывая, что – момент силы относительно центра 0 , получим:

Теорема об изменении момента количества движения точки. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь неподвижного центра, равна моменту действующей на точку силы относительно того же центра .

Из равенства следует, что если, то.

Если момент действующих сил относительно некоторого центра равен нулю, то момент количества движения точки относительно этого центра есть величина постоянная .

Такое возможно в двух случаях: либо, либо плечо равно нулю, тогда эта сила будет называться центральной , т.е. линия ее действия проходит все время через данный центр О (например, сила притяжения планет к Солнцу, сила натяжения нити при кордовой модели).

Главным моментом количеств движения (или кинетическим моментом) системы относительно данного центра О называется векторная величина, равная геометрической сумме моментов количеств движения всех точек системы относительно этого центра:

Аналогично определяются моменты количеств движения (МКД) относительно координатных осей:

В предыдущей лекции отмечалось, что количество движения можно рассматривать как характеристику поступательного движения . Ниже покажем, что главный МКД системы может рассматриваться как характеристика вращательного движения .

Рис.45

Чтобы уяснить механический смысл величины и иметь необхо­димые формулы для решения задач, вычислим кинетический момент тела, вращающегося вокруг неподвижнойоси (рис.45).Приэтом, как обычно, определение вектора сводится к определению его проекций .

Найдем сначала наиболее важ­ную для приложений формулу, оп­ределяющую величину К z , т.е. кине­тический момент вращающегося тела относительно оси вращения.

Для любой точки тела, отстоя­щей от оси вращения на расстоя­нии , скорость . Сле­довательно, для этой точки . Тогда для всего тела, вынося общий множитель за скобку, получим

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z . Окончательно находим

Таким образом, кинетический момент вращающегося тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость тела.

Если система состоит из нескольких тел, вращающихся вокруг одной и той же оси, то, очевидно, будет

Легко видеть аналогию между формулами и : количество движения равно произведению массы (величина, характеризующая инертность тела при поступательном движении) на скорость; кинети­ческий момент равен произведению момента инерции (величина, характеризующая инертность тела при вращательном движении) на угловую скорость.

Теорема об изменении главного момента количеств движения системы (теорема моментов).

Теорема моментов для одной материальной точки будет справедлива для каждой из точек системы. Следовательно, если рассмотреть точку системы с массой , имеющую скорость , то для нее будет

где и - равнодействующие всех внешних и внутренних сил, действующих на данную точку.

Составляя такие уравнения для всех точек системы и складывая их почленно, получим:

Но последняя сумма по свойству внутренних сил системы равна нулю. Тогда найдем окончательно:

Полученное уравнение выражает следующую теорему моментов для системы: производнаяпо времени от главногомомента количеств движения системы относительно некоторого неподвижного центра, равна сумме моментов всех внешних сил системы относительно того же центра.

Проектируя обе части равенства на неподвижные оси Охуz , получим:

Уравнения выражают теорему моментов относительно любой неподвижной оси.

В кинематике было показано, что движение твердого тела в общем случае сла­гается из поступательного движения вместе с некоторым полюсом и вращательного движения вокруг этого полюса. Если за полюс выбрать центр масс, то поступательная часть движения тела может быть изу­чена с помощью теоремы о движении центра масс, а вращатель­ная - с помощью теоремы моментов.


Практическая ценность теоремы моментов состоит еще в том, что она, аналогично теореме об изменении количества движения, по­зволяет при изучении вра­щательного движения системы исключать из рас­смотрения все наперед неиз­вестные внутренние силы.

Из теоремы моментов можно получить следующие важные следствия.

1) Пусть сумма моментов относительно центра О всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения следует, что при этом . Таким образом, если сумма моментов относительно данного центра всех приложенных к системе внешних сил равна нулю, то главный, момент количеств движения системы относительно этого центра будет численно и по направлению постоянен.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их моментов относительно некоторой неподвижной оси Оz равна нулю:

Тогда из уравнения следует, что при этом К z = const. Таким образом, если сумма моментов всех действующих на си­стему внешних сил относительно какой-нибудь оси равна нулю, то главный момент количеств движения системы относительно этой оси будет величиной постоянной.

Эти результаты выражают собою закон сохранения главного момента количеств движения системы. Из них следует, что внутренние силы изменить главный момент количеств движения системы не могут.

Случай вращающейся системы.

Рассмотрим систему, вращающуюся вокруг неподвижной (или проходящей через центр масс) оси Оz. Тогда . Если в этом случае , то

Отсюда приходим к следующим выводам.

а) Если система неизменяема (абсолютно твердое тело), то и, следовательно, , т. е. твердое тело, закреплен­ное на оси, вращается в этом случае с постоянной угловой скоростью.

б) Если система изменяема, то под действием внутренних (или внешних) сил отдельные ее точки могут удаляться от оси, что вызы­вает увеличение , или приближаться к оси, что приведет к умень­шению . Но поскольку , то при увеличении момента инерции угловая скорость системы будет уменьшаться, а при умень­шении момента инерции - увеличиваться. Таким образом, действием внутренних сил можно изменить угловую скорость вращения системы, так как постоянство К z не означает вообще постоянства .

Рассмотрим некоторые примеры:

а) Опыты с платформой Жуковского. Для демонстра­ции закона сохранения момента количеств движения удобно пользо­ваться простым прибором, называемым «платформой Жуковского». Это круглая горизонтальная платформа на шариковых опорных под­шипниках, которая может с малым трением вращаться вокруг верти­кальной оси z. Для человека, стоящего на такой платформе,

и, следовательно, . Если человек, разведя руки в стороны, сообщит себе толчком вращение вокруг вертикальной оси, а затем опустит руки, то величина уменьшится и, следовательно, угловая скорость вра­щения возрастет. Таким способом увеличения угловой скорости враще­ния широко пользуются в балете, при прыжках в воздухе (сальто) и т. п.

Далее, человек, стоящий на платформе неподвижно (К z =0 ), мо­жет повернуться в любую сторону, вращая вытянутую горизонтально руку в противоположном направлении. Угловая скорость вращения человека при этом будет такой, чтобы в сумме величина К z системы осталась равной нулю.

б) Раскачивание качелей . Давлением ног (сила внутрен­няя) человек, стоящий на качелях, раскачать их не может. Сделать это можно следующим образом. Когда качели находятся в левом верх­нем положении A 0 , человек приседает. При прохождении через вер­тикаль он быстро выпрямляется. Тогда массы приближаются к оси вращения z, величина уменьшается, и угловая скорость скачком возрастает. Это увеличение приводит в конечном счете к тому, что качели поднимутся выше начального уровня A 0 . В правом верхнем положении, когда , человек опять приседает (на величине это, очевидно, не скажется); при прохождении через вертикаль он снова выпрямляется и т.д. В результате размахи качелей будут возрастать.

в) Реактивный момент винта. Воздушный винт, устано­вленный на вертолете, не только отбрасывает воздух вниз, но и сообщает отбрасываемой массе вращение. Суммарный момент количеств движения отбрасываемой массы воздуха и верто­лета должен при этом остаться равным нулю, так как система вначале была неподвижна, а силы взаимодействия между винтом и средой внутренние. Поэтому вертолет начинает вращаться в сторону, противоположную направлению вращения винта. Действующий при этом на вертолет вращающий момент называют реактивным моментом.

Чтобы предотвратить реактивное вращение корпуса одновинтового вертолета, на его хвостовой части устанавливают соответствующий рулевой винт. У многовинтового вертолета винты делают вращающи­мися в разные стороны.

Просмотр: эта статья прочитана 23265 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Механической системой материальных точек или тел называется такая их совокупность, в которой положение и движение каждой точки (или тела) зависит от положения и движения остальных.
Материальное тело рассматривается, как система материальных точек (частиц), которые образуют это тело.
Внешними силами называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел, которые не принадлежат данной системе.
Внутренними силами , называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел той же системы, т.е. с которыми точки или тела данной системы взаимодействуют между собой.
Внешние и внутренние силы системы, в свою очередь могут быть активными и реактивными
Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном поле тяжести, для которого, вес любой частицы тела пропорционален ее массе. Поэтому распределение масс в теле можно определить по положению его центра тяжести - геометрической точки С , координаты которой называют центром масс или центром инерции механической системы
Теорема о движении центра масс механической системы : центр масс механической системы движется как материальная точка, масса которой равняется массе системы, и к которой приложены все внешние силы, действующие на систему
Выводы:

  1. Механическую систему или твердое тело можно рассматривать как материальную точку в зависимости от характера ее движения, а не от ее размеров.
  2. Внутренние силы не учитываются теоремой о движении центра масс.
  3. Теорема о движении центра масс не характеризует вращательное движение механической системы, а только поступательное

Закон о сохранении движения центра масс системы:
1. Если сумма внешних сил (главный вектор) постоянно равен нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.
2. Если сумма проекций всех внешних сил на какую-нибудь ось равняется нулю, то проекция скорости центра масс системы на эту же ось величина постоянная.

Теорема об изменении количества движения.

Количество движения материальной точк и - векторная величина, которая равняется произведению массы точки на вектор ее скорости.
Единицей измерения количества движения есть (кг м/с).
Количество движения механической системы - векторная величина, равняющаяся геометрической сумме (главному вектору) количества движения всех точек системы.или количество движения системы равняется произведению массы всей системы на скорость ее центра масс
Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (пример, вращение тела вокруг неподвижной оси, которая проходит через центр масс тела).
Если движение тела сложное, то не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).
Импульс силы характеризует действие силы за некоторый промежуток времени.
Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов
Теорема об изменении количества движения материальной точки :
(в дифференциальной форме): Производная за временем от количества движения материальной точки равняется геометрической сумме действующих на точки сил
(в интегральной форме): Изменение количества движения за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за тот же промежуток времени.

Теорема об изменении количества движения механической системы
(в дифференциальной форме): Производная по времени от количества движения системы равняется геометрической сумме всех действующих на систему внешних сил.
(в интегральной форме): Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов, действующих на систему внешних сил, за тот же промежуток времени.
Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.
Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.
Закон сохранения количества движения системы.

  1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равняется нулю, то проекция количества движения на эту ось является величиной постоянной.

Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.

  1. Классификация сил, действующих на механическую систему
  2. Свойства внутренних сил
  3. Масса системы. Центр масс
  4. Дифференциальные уравнения движения механической системы
  5. Теорема о движении центра масс механической системы
  6. Закон о сохранении движения центра масс системы
  7. Теорема об изменении количества движения
  8. Закон сохранения количества движения системы

Язык: русский, украинский

Размер: 248К

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

Посмотрим теперь, что получается в случае большого количества частиц, т. е. когда тело состоит из множества частичек со множеством сил, действующих между ними и извне. Разумеется, мы уже знаем, что момент силы, действующий на любую i-ю частицу (т. е. произведение силы, действующей на i-ю частицу, на ее плечо), равен скорости изменения момента количества движения этой частицы, а момент количества движения i-й частицы в свою очередь равен произведению импульса частицы на его плечо. Допустим теперь, что мы сложили моменты сил x i всех частиц и назвали это полным моментом сил τ. Эта величина должна быть равна скорости изменения суммы моментов количества движения всех частиц L i . Эту сумму можно принять за определение новой величины, которую мы назовем полным моментом количества движения L. Точно так же, как импульс тела равен сумме импульсов составляющих его частиц, момент количества движения тела тоже равен сумме моментов составляющих его частиц. Таким образом, скорость изменения полного момента количества движения L равна полному моменту сил.

С непривычки может показаться, что полный момент сил — ужасно сложная штука. Ведь нужно учитывать все внутренние и внешние силы. Однако если мы вспомним, что по закону Ньютона силы действия и противодействия не только равны, но и (что особенно важно!) действуют по одной и той же прямой в противоположных направлениях (неважно, говорил ли об этом сам Ньютон или нет, неявно он подразумевал это), то два момента внутренних сил между двумя взаимодействующими частицами должны быть равны друг другу и направлены противоположно, поскольку для любой оси плечи их будут одинаковы. Поэтому все внутренние моменты сил взаимно сокращаются и получается замечательная теорема: скорость изменения момента количества движения относительно любой оси равна моменту внешних сил относительно этой же оси!

Итак, мы получили в руки мощную теорему о движении большого коллектива частиц, которая позволяет нам изучать общие свойства движения, не зная деталей его внутреннего механизма. Эта теорема верна для любого набора частиц, независимо от того, образуют ли они твердое тело или нет.

Особенно важным частным случаем этой теоремы является закон сохранения момента количества движения, который гласит: если на систему частиц не действуют никакие внешние моменты сил, то ее момент количества движения остается постоянным.

Рассмотрим один очень важный частный случай набора частиц, когда они образуют твердое тело, т. е. объект, который всегда имеет определенную форму и геометрический размер и может только крутиться вокруг какой-то оси. Любая часть такого объекта в любой момент времени расположена одинаковым образом относительно других его частей. Попытаемся теперь найти полный момент количества движения твердого тела. Если масса i-й частицы его равна m i , а положение ее (x i , y i), то задача сводится к определению момента количества движения этой частицы, поскольку полный момент количества движения равен сумме моментов количества движения всех таких частиц, образующих тело. Для движущейся по окружности точки момент количества движения равен, конечно, произведению ее массы на скорость и на расстояние до оси вращения, а скорость в свою очередь равна угловой скорости, умноженной на расстояние до оси:

Это выражение очень похоже на формулу для импульса, который равен произведению массы на скорость. Скорость при этом заменяется на угловую скорость, а масса, как видите, заменяется на некоторую новую величину, называемую моментом инерции I. Вот что играет роль массы при вращении! Уравнения (18.21) и (18.22) говорят нам, что инерция вращения тела зависит не только от масс составляющих его частичек, но и от того, насколько далеко расположены они от оси. Так что если мы имеем два тела равной массы, но в одном из них массы расположены дальше от оси, то его инерция вращения будет больше. Это легко продемонстрировать на устройстве, изображенном на фиг. 18.4. Масса М в этом устройстве не может падать слишком быстро, потому что она должна крутить тяжелый стержень. Расположим сначала массы т около оси вращения, причем грузик М будет как-то ускоряться. Однако после того, как мы изменим момент инерции, расположив массы т гораздо дальше от оси, мы увидим, что грузик М ускоряется гораздо медленнее, чем прежде. Происходит это вследствие возрастания инертности вращения, которая составляет физический смысл момента инерции — суммы произведений всех масс на квадраты их расстояний от оси вращения.

Между массой и моментом инерции имеется существенная разница, которая проявляется удивительным образом. Дело в том, что масса объекта обычно не изменяется, тогда как момент инерции легко изменить. Представьте себе, что вы встали на стол, который может вращаться без трения, и держите в вытянутых руках гантели, а сами медленно вращаетесь. Можно легко изменить момент инерции, согнув руки; при этом наша масса останется той же самой. Когда мы проделаем все это, то закон сохранения момента количества движения будет творить чудеса, произойдет нечто удивительное. Если моменты внешних сил равны нулю, то момент количества движения равен моменту инерции I 1 , умноженному на угловую скорость ω 1 , т. е. ваш момент количества движения равен I 1 ω 1 . Согнув затем руки, вы тем самым уменьшили момент инерции до величины I 2 . Но поскольку из-за закона сохранения момента количества движения произведение /со должно остаться тем же самым, то I 1 ω 1 должно быть равно I 2 ω 2 . Так что если вы уменьшили момент инерции, то ваша угловая скорость в результате этого должна возрасти.



Загрузка...

Реклама