emou.ru

Что называется основным состоянием системы. Основные определения. Системный подход в моделировании

Наименование параметра Значение
Тема статьи: Состояние системы
Рубрика (тематическая категория) Образование

Определœение 1.6 Состоянием системы называют совокупность параметров, которые в каждый рассматриваемый момент времени отражают наиболее существенные с определœенной точки зрения стороны поведения системы, ее функционирования.

Определœение является весьма общим. В нем подчеркивается, что выбор характеристик состояния зависит от целœей исследования. В простейших случаях состояние может оцениваться одним параметром, способным принимать два значения (включено или выключено, 0 или 1). В более сложных исследованиях приходится учитывать множество параметров, способных принимать большое число значений.

Система, состояние которой изменяется во времени под воздействием определœенных причинно-следственных связей, принято называть динамической системой, в отличие от статической системы, состояние которой во времени не изменяется.

Желаемое состояние системы достигается или поддерживается соответствующими управляющими воздействиями.

Управление

В кибернетике управление воспринимается как процесс целœенаправленного изменения состояния системы. Иногда управлением называют процесс переработки воспринятой информации в сигналы, направляющие деятельность машин и организмов. А процессы восприятия информации, ее хранения, передачи и воспроизведения относят к области связи. Существует и более широкая трактовка понятия управления, включающая всœе элементы управленческой деятельности, объединœенные единством цели, общностью решаемых задач.

Определœение 1.7 Управлением принято называть информационный процесс подготовки и сопровождения целœенаправленного воздействия на объекты и процессы реального мира.

Такая трактовка охватывает всœе вопросы, которые приходится решать управляющему органу, от сбора информации, системного анализа, выработки решений, планирования мероприятий по реализации решений и до формирования управляющих сигналов и доведения их до исполнительных органов.

Состояние системы - понятие и виды. Классификация и особенности категории "Состояние системы" 2017, 2018.

  • - Состояние системы

    Понятие внешней среды Система существует среди других материальных объектов, которые не вошли в нее. Они объединяются понятием "внешняя среда" - объекты внешней среды. Внешняя среда- это набор существующих в пространстве и во време­ни объектов (систем), которые,... .[читать подробнее] .


  • Лекция 2: Системные свойства. Классификация систем

    Свойства систем.

    Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

    Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

    Характеристика — то, что отражает некоторое свойство системы.

    Какие свойства систем известны.

    Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge — возникать, появляться).

    1. Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.
    2. Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

    Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

    Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

    Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

    Целостность и эмерджентность — интегративные свойства системы.

    Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

    Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

    Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

    Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

    Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

    Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

    Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

    Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

    Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

    Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае — системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития — это блуждание в потемках.

    Кто не знает, в какую гавань он плывет, для того нет попутного ветра

    Поведение системы определяется характером реакции на внешние воздействия.

    Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

    Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

    Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

    Надежность — свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть — как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

    Адаптируемость — свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

    Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

    Можно выделить два аспекта взаимодействия:

    • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
    • среда обычно является источником неопределенности для систем.

    Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

    Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

    Рис. — Классификация систем

    Основание (критерий) классификации Классы систем
    По взаимодействию с внешней средой Открытые
    Закрытые
    Комбинированные
    По структуре Простые
    Сложные
    Большие
    По характеру функций Специализированные
    Многофункциональные (универсальные)
    По характеру развития Стабильные
    Развивающиеся
    По степени организованности Хорошо организованные
    Плохо организованные (диффузные)
    По сложности поведения Автоматические
    Решающие
    Самоорганизующиеся
    Предвидящие
    Превращающиеся
    По характеру связи между элементами Детерминированные
    Стохастические
    По характеру структуры управления Централизованные
    Децентрализованные
    По назначению Производящие
    Управляющие
    Обслуживающие

    Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

    Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

    Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

    Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

    Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

    Искусственные делятся на технические (технико-экономические) и социальные (общественные).

    Техническая система спроектирована и изготовлена человеком в определенных целях.

    К социальным системам относятся различные системы человеческого общества.

    Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей — организационно-технических систем.

    Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

    Примеры человеко-машинных систем: автомобиль — водитель; самолет — летчик; ЭВМ — пользователь и т.д.

    Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата.

    Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

    Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

    Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

    Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

    Абстрактные системы разделяют на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

    На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям ее можно считать закрытой. В противном случае — открытой.

    Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем. Если вычленить из этого образования собственно рассматриваемую систему, то оставшаяся часть — ее среда.

    Открытая система связана со средой определенными коммуникациями, то есть сетью внешних связей системы. Выделение внешних связей и описание механизмов взаимодействия «система-среда» является центральной задачей теории открытых систем. Рассмотрение открытых систем позволяет расширить понятие структуры системы. Для открытых систем оно включает не только внутренние связи между элементами, но и внешние связи со средой. При описании структуры внешние коммуникационные каналы стараются разделить на входные (по которым среда воздействует на систему) и выходные (наоборот). Совокупность элементов этих каналов, принадлежащих собственной системе называются входными и выходными полюсами системы. У открытых систем, по крайней мере, один элемент имеет связь с внешней средой, по меньшей мере, один входной полюс и один выходной, которыми она связана с внешней средой.

    Для каждой системы связи со всеми подчиненными ей подсистемами и между последним, являются внутренними, а все остальные — внешними. Связи между системами и внешней средой также, как и между элементами системы, носят, как правило, направленный характер.

    Важно подчеркнуть, что в любой реальной системе в силу законов диалектики о всеобщей связи явлений число всех взаимосвязей огромно, так что учесть и исследования абсолютно все связи невозможно, поэтому их число искусственно ограничивают. Вместе с тем, учитывать все возможные связи нецелесообразно, так как среди них есть много несущественных, практически не влияющих на функционирование системы и количество полученных решений (с точки зрения решаемых задач). Если изменение характеристик связи, ее исключение (полный разрыв) приводят к значительному ухудшению работы системы, снижению эффективности, то такая связь — существенна. Одна из важнейших задач исследователя — выделить существенные для рассмотрения системы в условиях решаемой задачи связи и отделить их от несущественных. В связи с тем, что входные и выходные полюса системы не всегда удается четко выделить, приходится прибегать к определенной идеализации действий. Наибольшая идеализация имеет место при рассмотрении закрытой системы.

    Закрытой называется система, которая не взаимодействует со средой или взаимодействует со средой строго определенным образом. В первом случае предполагается, что система не имеет входных полюсов, а во втором, что входные полюса есть, но воздействие среды носит неизменный характер и полностью (заранее) известно. Очевидно, что при последнем предположении указанные воздействия могут быть отнесены собственно к системе, и ее можно рассматривать, как закрытую. Для закрытой системы, любой ее элемент имеет связи только с элементами самой системы.

    Разумеется, закрытые системы представляют собой некоторую абстракцию реальной ситуации, так как, строго говоря, изолированных систем не существует. Однако, очевидно, что упрощение описания системы, заключаются в отказе от внешних связей, может привести к полезным результатам, упростить исследование системы. Все реальные системы тесно или слабо связаны с внешней средой — открытые. Если временный разрыв или изменение характерных внешних связей не вызывает отклонения в функционировании системы сверх установленных заранее пределов, то система связана с внешней средой слабо. В противном случае — тесно.

    Комбинированные системы содержат открытые и закрытые подсистемы. Наличие комбинированных систем свидетельствует о сложной комбинации открытой и закрытой подсистем.

    В зависимости от структуры и пространственно-временных свойств системы делятся на простые, сложные и большие.

    Простые — системы, не имеющие разветвленных структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так и со средой.

    Сложные — характеризуются большим числом элементов и внутренних связей, их неоднородностью и разнокачественностью, структурным разнообразием, выполняют сложную функцию или ряд функций. Компоненты сложных систем могут рассматриваться как подсистемы, каждая из которых может быть детализирована еще более простыми подсистемами и т.д. до тех пор, пока не будет получен элемент.

    Определение N1: система называется сложной (с гносеологических позиций), если ее познание требует совместного привлечения многих моделей теорий, а в некоторых случаях многих научных дисциплин, а также учета неопределенности вероятностного и невероятностного характера. Наиболее характерным проявлением этого определения является многомодельность.

    Модель — некоторая система, исследование которой служит средством для получения информации о другой системе. Это описание систем (математическое, вербальное и т.д.) отображающее определенную группу ее свойств.

    Определение N2: систему называют сложной если в реальной действительности рельефно (существенно) проявляются признаки ее сложности. А именно:

    1. структурная сложность — определяется по числу элементов системы, числу и разнообразию типов связей между ними, количеству иерархических уровней и общему числу подсистем системы. Основными типами считаются следующие виды связей: структурные (в том числе, иерархические), функциональные, каузальные (причинно-следственные), информационные, пространственно-временные;
    2. сложность функционирования (поведения) — определяется характеристиками множества состояний, правилами перехода из состояния в состояние, воздействие системы на среду и среды на систему, степенью неопределенности перечисленных характеристик и правил;
    3. сложность выбора поведения — в многоальтернативных ситуациях, когда выбор поведения определяется целью системы, гибкостью реакций на заранее неизвестные воздействия среды;
    4. сложность развития — определяемая характеристиками эволюционных или скачкообразных процессов.

    Естественно, что все признаки рассматриваются во взаимосвязи. Иерархическое построение — характерный признак сложных систем, при этом уровни иерархии могут быть как однородные, так и неоднородные. Для сложных систем присущи такие факторы, как невозможность предсказать их поведение, то есть слабо предсказуемость, их скрытность, разнообразные состояния.

    Сложные системы можно подразделить на следующие факторные подсистемы:

    1. решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания между всеми другим подсистемами;
    2. информационную, которая обеспечивает сбор, переработку и передачу информации, необходимой для принятия глобальных решений и выполнения локальны задач;
    3. управляющую для реализации глобальных решений;
    4. гомеостазную, поддерживающую динамическое равновесие внутри систем и регулирующую потоки энергии и вещества в подсистемах;
    5. адаптивную, накапливающую опыт в процессе обучения для улучшения структуры и функций системы.

    Большой системой называют систему, ненаблюдаемую одновременно с позиции одного наблюдателя во времени или в пространстве, для которой существенен пространственный фактор, число подсистем которой очень велико, а состав разнороден.

    Система может быть и большой и сложной. Сложные системы объединяет более обширную группу систем, то есть большие — подкласс сложных систем.

    Основополагающими при анализе и синтезе больших и сложных систем являются процедуры декомпозиции и агрегирования.

    Декомпозиция — разделение систем на части, с последующим самостоятельным рассмотрением отдельных частей.

    Очевидно, что декомпозиция представляют собой понятие, связанное с моделью, так как сама система не может быть расчленена без нарушений свойств. На уровне моделирования, разрозненные связи заменятся соответственно эквивалентами, либо модели систем строится так, что разложение ее на отдельные части при этом оказывается естественным.

    Применительно к большим и сложным системам декомпозиция является мощным инструментом исследования.

    Агрегирование является понятием, противоположным декомпозиции. В процессе исследования возникает необходимость объединения элементов системы с целью рассмотреть ее с более общих позиций.

    Декомпозиция и агрегирование представляют собой две противоположные стороны подхода к рассмотрению больших и сложных систем, применяемые в диалектическом единстве.

    Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого последующего момента времени, называются детерминированными.

    Стохастические системы — системы, изменения в которых носят случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

    По степени организованности: хорошо организованные, плохо организованные (диффузные).

    Представить анализируемый объект или процесс в виде хорошо организованной системы означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты. Проблемная ситуация может быть описана в виде математического выражения. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

    Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

    Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

    Плохо организованные системы. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

    Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

    С точки зрения характера функций различаются специальные, многофункциональные, и универсальные системы.

    Для специальных систем характерна единственность назначения и узкая профессиональная специализация обслуживающего персонала (сравнительно несложная).

    Многофункциональные системы позволяют реализовать на одной и той же структуре несколько функций. Пример: производственная система, обеспечивающая выпуск различной продукции в пределах определенной номенклатуры.

    Для универсальных систем: реализуется множество действий на одной и той же структуре, однако состав функций по виду и количеству менее однороден (менее определен). Например, комбайн.

    По характеру развития 2 класса систем: стабильные и развивающиеся.

    У стабильной системы структура и функции практически не изменяются в течение всего периода ее существования и, как правило, качество функционирования стабильных систем по мере изнашивания их элементов только ухудшается. Восстановительные мероприятия обычно могут лишь снизить темп ухудшения.

    Отличной особенностью развивающихся систем является то, что с течением времени их структура и функции приобретают существенные изменения. Функции системы более постоянны, хотя часто и они видоизменяются. Практически неизменными остается лишь их назначение. Развивающиеся системы имеют более высокую сложность.

    В порядке усложнения поведения: автоматические, решающие, самоорганизующиеся, предвидящие, превращающиеся.

    Автоматические: однозначно реагируют на ограниченный набор внешних воздействий, внутренняя их организация приспособлена к переходу в равновесное состояние при выводе из него (гомеостаз).

    Решающие: имеют постоянные критерии различения их постоянной реакции на широкие классы внешних воздействий. Постоянство внутренней структуры поддерживается заменой вышедших из строя элементов.

    Самоорганизующиеся: имеют гибкие критерии различения и гибкие реакции на внешние воздействия, приспосабливающиеся к различным типам воздействия. Устойчивость внутренней структуры высших форм таких систем обеспечивается постоянным самовоспроизводством.

    Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

    Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

    Если устойчивость по своей сложности начинает превосходить сложные воздействия внешнего мира — это предвидящие системы: она может предвидеть дальнейший ход взаимодействия.

    Превращающиеся — это воображаемые сложные системы на высшем уровне сложности, не связанные постоянством существующих носителей. Они могут менять вещественные носители, сохраняя свою индивидуальность. Науке примеры таких систем пока не известны.

    Систему можно разделить на виды по признакам структуры их построения и значимости той роли, которую играют в них отдельные составные части в сравнение с ролями других частей.

    В некоторых системах одной из частей может принадлежать доминирующая роль (ее значимость >> (символ отношения «значительного превосходства») значимость других частей). Такой компонент — будет выступать как центральный, определяющий функционирование всей системы. Такие системы называют централизованными.

    В других системах все составляющие их компоненты примерно одинаково значимы. Структурно они расположены не вокруг некоторого централизованного компонента, а взаимосвязаны последовательно или параллельно и имеют примерно одинаковые значения для функционирования системы. Это децентрализованные системы.

    Системы можно классифицировать по назначению. Среди технических и организационных систем выделяют: производящие, управляющие, обслуживающие.

    В производящих системах реализуются процессы получения некоторых продуктов или услуг. Они в свою очередь делятся на вещественно-энергетические, в которых осуществляется преобразование природной среды или сырья в конечный продукт вещественной или энергетической природы, либо транспортирование такого рода продуктов; и информационные — для сбора, передачи и преобразования информации и предоставление информационных услуг.

    Назначение управляющих систем — организация и управление вещественно-энергетическими и информационными процессами.

    Обслуживающие системы занимаются поддержкой заданных пределов работоспособности производящих и управляющих систем.

    Читайте также:
    1. C2 Покажите на трех примерах наличие многопартийной политической системы в современной России.
    2. II. Системы, развитие которых можно представить с помощью Универсальной Схемы Эволюции
    3. III. Когда выгодно рассматривать движение из движущейся системы отсчета (решения двух задач учителем)?
    4. III. Требования к организации системы обращения с медицинскими отходами
    5. MES-системы (Manufacturing Execution System) - системы управления производством (у нас больше известные как АСУТП)
    6. N исследовать то психическое состояние, которое является оптимальным при выполнении человеком самых разных деятельностей.
    7. Oсoбеннoсти и прoблемы функциoнирoвaния вaлютнoй системы Республики Белaрусь
    8. Sp2-Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3 (примеры).

    Состояние системы определяется уровнями.

    Уровень – это количество массы, энергии, информации заключенное в переменной (блоке) или в системе в целом в данный момент времени.

    Уровни не остаются постоянными, они претерпевают те или иные изменения. Скорость, с которой происходят эти изменения принято называть темпом.

    Темпы определяют активность, интенсивность и скорость осуществления процессов преобразования, накопления, передачи и т.д. вещества, энергии, информации, протекающих внутри системы.

    Темпы и уровни взаимосвязаны, но их взаимосвязь не однозначна. С одной стороны темпы порождают новые уровни, которые в свою очередь, оказывают влияние на темпы, т.е. регулируют их.

    Так, например, процесс диффузии вещества определяет переход системы с уровня х 1 на уровень х 2 (движущая сила процесса массопереноса). В то же время скорость этого процесса (темп массопереноса), зависит от массы указанных уровней в соответствии с выражением:

    где: а – коэффициент массопереноса.

    Одной из важнейших характеристик состояния системы является обратная связь.

    Обратная связь - это свойство системы (блока) реагировать на вызванное входным воздействием изменение одной или нескольких переменных, таким образом, что в результате процессов внутри системы это изменение вновь воздействует на ту же или те же переменные.

    Обратная связь в зависимости от способа воздействия может быть прямой (когда обратное воздействие оказывается без участия переменных (блоков) – посредников) или контурной (когда обратное воздействие оказывается с участием переменных (блоков) – посредников) (рис.3).


    Рис. 3. Принцип обратной связи

    а – прямая обратная связь; б – контурная обратная связь.

    В зависимости от воздействия на первичные изменения переменных в системе выделяются два вида обратной связи:

    § Отрицательная обратная связь, т.е. когда полученный извне импульс образует замкнутую цепь и вызывает затухание (стабилизацию) первоначального воздействия;

    § Положительная обратная связь, т.е. когда полученный извне импульс образует замкнутую цепь и вызывает усиление первоначального воздействия.

    Отрицательная обратная связь представляет собой одну из форм саморегуляции, обеспечивающую динамическое равновесие в системе. Положительная обратная связь в природных системах проявляется обычно в виде относительно кратковременных всплесков саморазрушающей деятельности.



    Преимущественно отрицательный характер обратной связи свидетельствует, что любое изменение в условиях окружающей среды приводит к изменению переменных системы и служит причиной перехода этой системы в новое равновесное состояние, отличное от первоначального. Этот процесс саморегуляции принято называть гомеостазом.

    Способность системы восстанавливать равновесие определяется еще двумя характеристиками её состояния:

    § Устойчивость системы, т.е. характеристика, указывающая какой величине изменения внешнего воздействия (импульса воздействия) соответствует допустимое изменение переменных системы, при котором возможно восстановлено равновесия;

    § Стабильность системы, т.е. характеристика, определяющая максимально допустимое изменение переменных системы, при котором возможно восстановления равновесия.

    Цель регуляции в системе формулируется в виде экстримального принципа (закон максимума потенциальной энергии): эволюция системы идет в сторону увеличения суммарного потока энергии через систему, а в стационарном состоянии достигается его максимально возможное значение (максимум потенциальной энергии).

    Состояние любой реальной системы, в каждый данный момент времени можно описать с помощью некоторого множества, характеризующий систему величин – параметра .

    Количество параметров, даже для относительно простой системы может быть очень большим, и поэтому практически для описания систем используется лишь наиболее существенные, характерными для нее параметрам, соответствующим конкретным целям изучения объектов. Так для исследования состояния здоровья человека с точки зрения необходимости освобождения его от работы во внимание в первую очередь принимают значения таких параметров, как температура и кровяное давление.

    Состояние некоторой экономической системы характеризуется такими параметрами, как количество и качество выпускаемой продукции, производительность труда, фонда отдачи и т.д.

    Для описания состояния и движения системы можно применять такие способы, как словесное описание, табличное или матричное описания, математические выражения и графические изображения.

    Словесное описание сводится к последовательному перечислению и характеристики параметров системы, тенденции их изменения, последовательности смены состояния системы. Словесное описание является весьма приблизительным и дает лишь общие представления о системе, кроме того, в значительной степени субъективно, т.к. отображает не только истинные характеристики системы, но и отношения к ним описывающего их человека.

    Таблицы и матрицы получили наиболее широкое распространение для количественной характеристики системы, выражаемой значениями их параметров в некоторой фиксированной моменты времени. По данным таблицы или совокупности таблиц, соответствующие различным моментам времени могут быть построены диаграммы и графики, дающие наглядное представление по динамики системы.

    Для описания движения системы и изменения её элементов применяются математические выражения , которые в свою очередь интерпретируются графиками, отображающие протекание тех или иных процессов в системе.

    Однако наиболее глубокой и адекватной является формализованная геометрическая интерпретация состояния и движения системы в так называемом пространстве состояний или фазовом пространстве.

    Пространство состояний системы

    Пространством состояния системы называется пространство, в каждой точке которого однозначно соответствует определенное состояние рассматриваемой динамической системы, а каждому процессу изменения состояния системы соответствует определенная траектория перемещения изображающей точки в пространстве.

    Для описания движений динамических систем широко используется метод основанный на используемый, так называемого, фазового пространства (n мерного эвклидова пространства), по осям которого откладываются значения всех n обобщенных координат, рассматриваемой динамической системы. При этом однозначное соответствие между состоянии системы и точками фазового пространства достигается выбором числа измерений, равного числу обобщенных координат рассматриваемой динамической системы.

    Обозначим параметрами некоторой системы символами z1, z2…zn, который можно рассматривать, как координаты вектора z, n мерного пространства. Такой вектор есть совокупность действительных чисел z=(z1,z2..zn). Параметры z1, z2…zn будут называться фазовыми координатами системы, а состояния (фазу системы) изобразим точкой z в фазовом пространстве. Размерность этого пространства определяется числом фазовых координат, то есть числом отобранных нами для описания системы, её существенных параметров.

    В том случае, когда состояния системы можно охарактеризовать только одним параметром z1 (например, расстояния от пункта отправления поезда движущегося по некоторому заданному маршруту), то фазное пространство будет одномерным и отображаться в виде участка оси z.

    Если состояние системы характеризуется 2умя параметрами z1 и z2 (например, движения автомобиля, выраженное углом относительно некоторого заданного направления и скоростью его движения), то фазовое пространство будет двухмерным .

    В тех случаях, когда состояние системы описывается 3ьомя параметрами (например, управления скорость и ускорение), оно будет изображаться точкой в трьохмерном пространстве , а траектория движения системы будет пространственно кривой в этом пространства.

    В общем случае, когда число параметров, характеризующую систему произвольно и как в большинстве сложных экономических систем значительно больше 3, геометрическая интерпретация теряет наглядность. Однако геометрическая терминология и в этих случая остается удобной для описания состояния и движения систем, в так называемом n мерном или многомерном фазовом пространстве (гипер пространстве).

    Число независимых параметров системы называют числом степеней свободы или вариантностью систем.

    В реальных условиях работы системы и её параметров (фазовые координаты), как правило, могут изменятся лишь в некоторых ограниченных приделах. Так скорость автомобиля ограничена приделами от 0 до 200 км в час, температура человека – от 35 градусов до 42 и т.д.

    Область фазового пространства за пределы, которого не может выходить изображающая точка, называют областью допустимых состояний системы . При исследования и проектирования систем всегда исходит из того, что система находится в пределах в области её допустимых состояний.

    Если изображающая точка выйдет за пределы этой области, то это грозит разрушением целостности системы, возможностью её распада на элементы, нарушением существующих связей, то есть полным прекращением её функционирование как данная система.

    Область допустимых состояний, которую можно назвать полем системы, включает в себя всевозможные фазовые траектории, то есть линии поведения систем. Совокупность фазовых траекторий называют фазовым портретом рассматриваемой динамической системы. Во всех случаях, когда параметры системы могут принимать в определенном интервале любые значения, то есть изменяется плавно изображающая точка, которая может располагаться в любой точке внутри области допустимых состояний, при этом мы имеем дело с так называемым непрерывным пространством состояний. Однако существует большое количество технических, биологических и экономических систем, в которых ряд параметров – координат могут принимать лишь дискретные значения.

    Только дискретно можно измерить количество станков в цехе, количество тех или иных органов и клеток в живом организме и т.д.

    Пространство состояний таких систем должно рассматриваться как дискретное, поэтому их точка, изображающая состояние такой системы, не может находится в любом месте, области допустимых состояний, а только в определенных фиксированных точках этой области. Изменение состояния таких систем, то есть их движения, будет интерпретироваться скачками изображающей точки из одного состояния в другое, в третье и т.д. Соответственно и траектория движения изображающей точки будет иметь при этом дискретный, прерывистый характер.

    Состояние. Понятием состояние обычно характеризуют мгновенную фотографию, «срез» системы, остановку в её развитии. Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через свойства, параметры системы (например, давление, скорость, ускорение - для физических систем; производительность, себестоимость продукции, прибыль - для экономических систем).

    Таким образом, состояние - это множество существенных свойств, которыми система обладает в данный момент времени.

    Возможные состояния реальной системы образуют множество допустимых состояний системы.

    Количество состояний (мощность множества состояний) может быть конечно, счетно (количество состояний измеряется дискретно, но их число бесконечно); мощности континуум (состояния изменяются непрерывно и число их бесконечно и несчетно).

    Состояния можно описать через переменные состояния . Если переменные – дискретные, то количество состояний может быть либо конечным, либо счетным. Если переменные – аналоговые (непрерывные), тогда - мощности континуум.

    Минимальное количество переменных, через которые может быть задано состояние, называется фазовым пространством . Изменение состояния системы отображается в фазовом пространстве фазовой траекторией .

    Поведение. Если система способна переходить из одного состояния в другое (например, s 1 →s 2 →s 3 → ...), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его характер.

    Равновесие. Способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять своё состояние сколь угодно долго. Это состояние называют состоянием равновесия.

    Устойчивость. Способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних (а в системах с активными элементами – внутренних) возмущающих воздействий.

    Состояние равновесия, в которое система способна возвращаться, называют устойчивым состоянием равновесия.

    Развитие. Под развитием обычно понимают увеличение сложности какой-либо системы, улучшение приспособленности к внешним условиям. В результате возникает новое качество или состояние объекта.

    Целесообразно выделять особый класс развивающихся (самоорганизующихся) систем, обладающих особыми свойствами и требующих использования специальных подходов к их моделированию.

    Входы системы х i – это различные точки воздействия внешней среды на систему (рис. 1.3).

    Входами системы могут быть информация, вещество, энергия и т.д., которые подлежат преобразованию.

    Обобщённым входом (X ) называют некоторое (любое) состояние всех r входов системы, которое можно представить в виде вектора

    X = (x 1 , x 2 , x 3 , …, x k , …, x r ).

    Выходы системы y i – это различные точки воздействия системы на внешнюю среду (рис. 1.3).

    Выход системы представляет собой результат преобразования информации, вещества и энергии.

    Движение системы – это процесс последовательного изменения её состояния.

    Рассмотрим зависимости состояний системы от функций (состояний) входов системы, её состояний (переходов) и выходов.

    Состояние системы Z (t ) в любой момент времени t зависит от функции входов X (t ), а также от предшествующих её состояний в моменты (t – 1), (t – 2), …, т.е. от функций её состояний (переходов)

    Z(t) = F c , (1)

    где F c – функция состояния (переходов) системы.

    Связь между функцией входа X(t ) и функцией выхода Y(t ) системы, без учёта предыдущих состояний, можно представить в виде

    Y(t) = Fв [X (t )],

    где F в – функция выходов системы.

    Система с такой функцией выходов называется статической .

    Если же выход системы зависит не только от функций входов X(t ), но и от функций состояний (переходов) Z(t – 1), Z (t – 2), ..., то

    системы с такой функцией выходов называются динамическими (или системами с поведением).

    В зависимости от математических свойств функций входов и выходов систем различают системы дискретные и непрерывные.

    Для непрерывных систем выражения (1) и (2) выглядят как:

    (4)

    Уравнение (3) определяет состояние системы и называется уравнением состояний системы.

    Уравнение (4) определяет наблюдаемый выход системы и называется уравнением наблюдений.

    Функции F c (функция состояний системы) и F в (функция выходов) учитывают не только текущее состояние Z (t ), но и предыдущие состояния Z (t – 1), Z (t – 2), …, Z (t v ) системы.

    Предыдущие состояния являются параметром «памяти» системы. Следовательно, величина v характеризует объём (глубину) памяти системы.

    Процессы системы – это совокупность последовательных изменений состояния системы для достижения цели. К процессам системы относятся:

    – входной процесс;

    – выходной процесс;



    Загрузка...