emou.ru

Гравитационные силы. Закон всемирного тяготения. Вес тела Сила притяжения определение

Впервые числовое значение G установил английский ученый Генри Кавендиш (1731 – 1810 гг.), проведя в 1798 году опыты на установке, называемой крутильными весами.

Опыт Кавендиша состоял в следующем:

На упругой нити AB подвешено коромысло CD, на концах которого укреплены два одинаковых свинцовых шарика, чьи массы m известны. Когда к этим шарикам подносят большие шары массами M, шарики, притягиваясь к ним, закручивают нить на некоторый угол. По углу закручивания нити можно вычислить силу тяготения и, зная массы шаров и расстояния между ними, найти значение G.

Самые разнообразные и точные опыты дали результат 6, 67 * 10 -1

Как и любые другие законы, закон всемирного тяготения имеет определенные границы применимости. Он применим для:

1. материальных точек,

2. тел, имеющих форму шара,

3. шара большего радиуса, взаимодействующего с телами, размеры которых много меньше размера шара.

Гравитационные силы между телами небольшой массы ничтожно малы, поэтому мы их часто не замечаем. Однако для тел, обладающих большой массой, эти силы достигают больших величин. Гравитационное поле является одним из видов материи. Оно характеризует изменения физических и геометрических свойств пространства вблизи массивных по силовому воздействию на другие физические объекты.

Космический корабль массой 8 тонн приблизился к орбитальной станции массой 20 тонн на расстоянии 100 метров. Найдите силу их взаимного притяжения.

F - ? СИ Решение Вычисление

M 1 = 8 т 8 * 10 3 кг

m 2 = 20 т 20* 10 3 кг

ч = 100 м

G = 6, 67 * 10 -1

Ответ: 1,07*10 -6 Н.

Сила тяжести. Вес тела. Невесомость.

Цель: разъяснить, что взаимодействие осуществляется через поле тяготения, а понятие невесомости является относительным понятие.

Тип урока

1. Организационный момент

2. Домашнее задание

3. Фронтальный опрос

4. Объяснение материала

5. Итог урока

Ход урока.

Домашнее задание:

Какие силы действуют между телами?

О чем говорит закон всемирного тяготения?

По какой формуле рассчитывается гравитационная сила?

Границы применимости закона всемирного тяготения?

Чему равна гравитационная постоянная?

Суть опыта Кавендиша?

Все тела – это сила, с которой тело, вследствие его притяжения к Земле, действуют на опору или подвес.

Почему такая сила возникает, как она направлена и чему равна?

Рассмотрим, например, тело, подвешенное к пружин, другой конец которой закреплен.

На тело действует сила тяжести , направленная вниз. Оно поэтому начинает падение, увлекая за собой нижний конец пружины. Пружина окажется из–за этого деформированной, и появится сила упругости пружины. Она приложена к верхнему краю тела и направлена вверх. Верхний край тела будет поэтому отставать в своем падении от других его частей, к которым сила упругости пружины не приложена. Вследствие этого тело деформируется. Возникает еще одна сила – сила упругости деформированного тела. Она приложена к пружине и направлена вниз. Вот эта-то сила и есть вес тела.

По третьему закону Ньютона эти силы упругости равны по модулю и направлены в противоположные стороны. После нескольких колебаний тело на пружине оказывается в покое. Это значит, что сила тяжести по модулю равна силе упругости пружины. Но этой же силе равен и вес тела, таким образом, в нашем примере вес тела, который мы обозначим буквой , по модулю равен силе тяжести.

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.


По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь.

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.


Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.


Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис . Мы поможем учиться легко при самых больших нагрузках!

Этот закон, называемый законом всемирного тяготения, в математической форме записывается следующим образом:

где m 1 и m 2 – массы тел, R – расстояние между ними (см. рис. 11а), а G - гравитационная постоянная, равная 6,67.10-11 Н.м 2 /кг2.

Закон всемирного тяготения был впервые сформулирован И. Ньютоном, когда он пытался объяснить один из законов И. Кеплера, утверждающий, что для всех планет отношение куба их расстояния R до Солнца к квадрату периода T обращения вокруг него одинаково, т.е.

Выведем закон всемирного тяготения так, как сделал это Ньютон, считая, что планеты движутся по окружностям. Тогда по второму закону Ньютона на планету массой mПл, движущуюся по окружности радиуса R со скоростью v и центростремительным ускорением v2/R должна действовать сила F, направленная к Солнцу (см. рис. 11б) и равная:

Скорость v планеты можно выразить через радиус R орбиты и период обращения T:

Подставляя (11.4) в (11.3) получаем следующее выражение для F:

Из закона Кеплера (11.2) следует, что T2 = const.R3 . Следовательно, (11.5) можно преобразовать в:

Таким образом, Солнце притягивает планету с силой прямо пропорциональной массе планеты и обратно пропорционально квадрату расстояния между ними. Формула (11.6) очень похожа на (11.1), не хватает лишь массы Солнца в числителе дроби справа. Однако если сила притяжения между Солнцем и планетой зависит от массы планеты, то эта сила должна зависеть также и от массы Солнца, а значит, константа в правой части (11.6) содержит массу Солнца в качестве одного из сомножителей. Поэтому Ньютон выдвинул своё знаменитое предположение, что гравитационная сила должна зависеть от произведения масс тел и закон стал таким, каким мы его записали в (11.1).

Закон всемирного тяготения и третий закон Ньютона не противоречат друг другу. По формуле (11.1) сила, с которой тело 1 притягивает тело 2, равно силе, с которой тело 2 притягивает тело 1.

Для тел обычных размеров гравитационные силы очень малы. Так, два рядом стоящих легковых автомобиля притягиваются друг к другу с силой, равной весу капли дождя. С тех пор, как Г. Кавендиш в 1798 г. определил значение гравитационной постоянной, формула (11.1) помогла совершить очень много открытий в «мире огромных масс и расстояний». Например, зная величину ускорения свободного падения (g=9,8 м/с2) и радиус Земли (R=6,4.106 м), можно вычислить её массу mЗ следующим образом. На каждое тело массой m1 вблизи поверхности Земли (т.е. на расстоянии R от её центра) действует гравитационная сила её притяжения, равная m1g, подстановка которой в (11.1) вместо F даёт:

откуда получаем, что m З = 6.1024 кг.

Вопросы для повторения:

· Сформулируйте закон всемирного тяготения?

· Что такое гравитационная постоянная?

Рис. 11. (а) – к формулировке закона всемирного тяготения; (б) – к выводу закона всемирного тяготения из закона Кеплера.

§ 12. СИЛА ТЯЖЕСТИ. ВЕС. НЕВЕСОМОСТЬ. ПЕРВАЯ КОСМИЧЕСКАЯ СКОРОСТЬ.

Гравитационное взаимодействие проявляется в притяжении друг к другу тел. Объясняется это взаимодействие наличием гравитационного поля вокруг каждого тела.

Модуль силы гравитационного взаимодействия между двумя материальными точками массойm 1 иm 2 расположенными на расстоянииrдруг от друга

(2.49)

где F 1,2 ,F 2,1 – силы взаимодействия направленные вдоль прямой соединяющей материальные точки,G= 6,67
– гравитационная постоянная.

Соотношение (2.3) носит название закона всемирного тяготения открытого Ньютоном.

Гравитационное взаимодействие справедливо для материальных точек и тел со сферически-симметричным распределением масс, расстояние между которыми отсчитывается от их центров.

Если принять одно из взаимодействующих тел Землю, а второе – тело с массой m, находящееся вблизи или на её поверхности, то между ними действует сила притяжения

, (2.50)

где M 3 ,R 3 – масса и радиус Земли.

Соотношение
- постоянная величина равная 9,8 м/с 2 , обозначаетсяg, имеет размерность ускорения и называетсяускорением свободного падения.

Произведение массы тела mи ускорения свободного падения, называетсясилой тяжести

. (2.51)

В отличие от силы гравитационного взаимодействия модуль силы тяжести
зависит от географической широты места расположения тела на Земле. На полюсах
, а на экваторе уменьшается на 0,36%. Это различие обусловлено тем, что Земля вращается вокруг своей оси.

С удалением тела относительно поверхности Земли на высоту уменьшается сила тяжести

, (2.52)

где
– ускорение свободного падения на высотеhот Земли.

Масса в формулах (2.3-2.6) является мерой гравитационного взаимодействия.

Если подвесить тело или положить его на неподвижную опору, оно будет покоиться относительно Земли, т.к. сила тяжести уравновешивается силой реакции,действующей на тело со стороны опоры или подвеса.

Сила реакции – сила, с которой действуют на данное тело другие тела, ограничивающие его движение.

Сила нормальной реакции опоры приложена к телу и направлена перпендикулярно плоскости опоры.

Сила реакции нити (подвеса)направлена вдоль нити (подвеса)

Вес тела сила, с которой тело давит на опору или растягивает нить подвеса и приложена к опоре или подвесу.

Вес численно равен силе тяжести если тело находится на горизонтальной поверхности опоры в состоянии покоя или равномерного прямолинейного движения. В других случаях вес тела и сила тяжести не равны по модулю.

2.6.3.Силы трения

Силы трения возникают в результате взаимодействия движущихся и покоящихся тел, соприкасающихся друг с другом.

Различают внешнее (сухое) и внутреннее (вязкое) трение.

Внешнее сухое трение делится на:

Перечисленным видам внешнего трения соответствуют силы трения, покоя, скольжения, качения.

С

ила трения покоя
действует между поверхно­стями взаи­мо­действую­щих тел, когда величина внеш­них сил недостаточна, чтобы вызвать их от­носи­тель­ное перемещение.

Если к телу, находящемуся в соприкосновении с другим телом, приложить возрастающую внешнюю силу , параллельную плоскости соприкосновения (рис. 2.2.а), то при измененииот нуля до некоторого значения
движение тела не возникает. Тело начинает движение приFF тр. max .

Максимальная сила трения покоя

, (2.53)

где – коэффициент трения покоя,N– модуль силы нормальной реакции опоры.

Коэффициент трения покоя можно определить экспериментально, нахождением тангенса угла наклона к горизонту поверхности, с которой начинает скатываться тело под действием его силы тяжести.

При F>
происходит скольжение тел относительно друг друга с некоторой скоростью(рис. 2.11 б).

Сила трения скольжения направлена против скорости . Модуль силы трения скольжения при малых скоростях движения вычисляется в соответствии с законом Амонтона

, (2.54)

где – безразмерный коэффициент трения скольжения, зависящий от материала и состояния поверхности соприкасающихся тел, и всегда меньше.

Сила трения качения возникает тогда, когда тело, имеющее форму цилиндра или шара радиусом R, катится по поверхности опоры. Численное значение силы трения качения определяется в соответствии с законом Кулона

, (2.55)

где k[м] – коэффициент трения качения.



Загрузка...